\qquad

Electrostatics-Charge

1. The diagram below represents two electrically
charged identical-sized metal spheres, A and B .

If the spheres are brought into contact, which sphere will have a net gain of electrons?

1. A, only
2. B, only
3. both A and B
4. neither A nor B
5. Metal sphere A has a charge of -2 units and an identical metal sphere, B, has a charge of -4 units. If the spheres are brought into contact with each other and then separated, the charge on sphere B will be
6. 0 units
7. -2 units
8. -3 units
9. +4 units
10. If an object has a net negative charge of 4.0 coulombs, the object possesses
11. 6.3×10^{18} more electrons than protons
12. 2.5×10^{19} more electrons than protons
13. 6.3×10^{18} more protons than electrons
14. 2.5×10^{19} more protons than electrons

Base your answers to questions 4 and 5 on the information below

A lightweight sphere hangs by an insulating thread. A student wishes to determine if the sphere is neutral or electrostatically charged. She has a negatively charged hard rubber rod and a positively charged glass rod. She does not touch the sphere with the rods, but runs tests by bringing them near the sphere one at a time.
4. Describe the test result that would prove that the sphere is neutral
5. Describe the test result that would prove that the sphere is positively charged.
6. Oil droplets may gain electrical charges as they are projected through a nozzle. Which quantity of charge is not possible on an oil droplet?

1. $8.0 \times 10^{-19} \mathrm{C}$
2. $4.8 \times 10^{-19} \mathrm{C}$
3. $3.2 \times 10^{-19} \mathrm{C}$
4. $2.6 \times 10^{-19} \mathrm{C}$
5. A positive test charge is placed between an electron, e, and a proton, p, as shown in the diagram below.
A Test charge
© D

When the test charge is released, it will move toward

1. A
2. B
3. C
4. D
5. A metal sphere has a net negative charge of $1.1 \times$ 10^{-6} coulomb. Approximately how many more electrons than protons are on the sphere?
6. 1.8×10^{12}
7. 5.7×10^{12}
8. 6.9×10^{12}
9. 9.9×10^{12}
10. A positively charged glass rod attracts object X . The net charge of object X
11. may be zero or negative
12. may be zero or positive
13. must be negative
14. must be positive
15. The charge-to-mass ratio of an electron is
16. $5.69 \times 10^{-12} \mathrm{C} / \mathrm{kg}$
17. $1.76 \times 10^{-11} \mathrm{C} / \mathrm{kg}$
18. $1.76 \times 10^{11} \mathrm{C} / \mathrm{kg}$
19. $5.69 \times 10^{12} \mathrm{C} / \mathrm{kg}$
20. What is the magnitude of the charge, in coulombs, of a lithium nucleus containing three protons and four neutrons?
\qquad

Electrostatics-Charge

12. The diagram below shows three neutral metal spheres, x, y, and z , in contact and on insulating stands.

Which diagram best represents the charge distribution on the spheres when a positively charged rod is brought near sphere x , but does not touch it.

(1)

13. What is the net electrical charge on a magnesium ion that is formed when a neutral magnesium atom loses two electrons?

1. $-3.2 \times 10^{-19} \mathrm{C}$
2. $-1.6 \times 10^{-19} \mathrm{C}$
3. $+1.6 \times 10^{-19} \mathrm{C}$
4. $+3.2 \times 10^{-19} \mathrm{C}$
5. A negatively charged plastic comb is brought close to, but does not touch, a small piece of paper. If the comb and the paper are attracted to each other, the charge on the paper
6. may be negative or neutral
7. may be positive or neutral
8. must be negative
9. must be positive
10. An object possessing an excess of 6.0×10^{6} electrons has a net charge of
11. $2.7 \times 10^{-26} \mathrm{C}$
12. $5.5 \times 10^{-24} \mathrm{C}$
13. $3.8 \times 10^{-13} \mathrm{C}$
14. $9.6 \times 10^{-13} \mathrm{C}$
15. When a neutral metal sphere is charged by contact
with a positively charged glass rod, the sphere
16. loses electrons
17. gains electrons
18. loses protons
19. gains protons
20. Which quantity of excess electric charge could be found on an object?
21. $6.25 \times 10^{-19} \mathrm{C}$
22. $4.8 \times 10^{-19} \mathrm{C}$
23. 6.25 elementary charges
24. 1.60 elementary charges
25. A particle could have a charge of
26. $0.8 \times 10^{-19} \mathrm{C}$
27. $1.2 \times 10^{-19} \mathrm{C}$
28. $3.2 \times 10^{-19} \mathrm{C}$
29. $4.1 \times 10^{-19} \mathrm{C}$
\qquad

Electrostatics-Charge

19. A dry plastic rod is rubbed with wool cloth and then held near a thin stream of water from a faucet. The path of the stream of water is changed, as represented in the diagram below.

Which force causes the path of the stream of water to change due to the plastic rod?

1. nuclear
2. magnetic
3. electrostatic
4. gravitational
5. Which net charge could be found on an object?
6. $+4.80 \times 10^{-19} \mathrm{C}$
7. $+2.40 \times 10^{-19} \mathrm{C}$
8. $-2.40 \times 10^{-19} \mathrm{C}$
9. $-5.60 \times 10^{-19} \mathrm{C}$
10. Two identically-sized metal spheres, A and B , are on insulating stands, as shown in the diagram below. Sphere A possesses an excess of 6.3×10^{10} electrons and sphere B is neutral.

Insulating stands
Which diagram best represents the charge distribution on sphere B?

(1)

(2)

(3)

(4)
22. Two identically-sized metal spheres on insulating stands are positioned as shown below. The charge on sphere A is -4.0×10^{-6} coulomb and the charge on sphere B is -8.0×10^{-6} coulomb.

The two spheres are touched together and then separated. The total number of excess electrons on sphere A after the separation is

1. 2.5×10^{13}
2. 3.8×10^{13}
3. 5.0×10^{13}
4. 7.5×10^{13}
