Jump to content

Blogs

Our community blogs

  1. So far this year, I have to say my favorite lesson this year is went we were working with the machine that shocked us when we touched it. I thought this was enjoyable becaue it was very funny to watch people get shocked when they went to touch or even kiss the Van de Graff Generator. I think the created a very enjoyable setting to learn about how proton, and electrons interact between each other, and what pain they an create when they or not ground. I personally tried touchig the machine and I quickly pulled my hand away because it hurt so bad! But some people were brave enough to go ahead and kiss the thing... I would never. I also found it so fascinating how we all could hold hands as a class and send one huge shock through all of use. I never knew soemthing was possible. But his wwas my favorite demonstration for a class period. I thought it also helped expand my knowledge on how proton, neutrons and electrons interect!

  2. To start your swinging motion, you must push off the ground to create some type of energy you wish to increase. As you swing backwards to get a starting swing from gravity, your potential energy will increase as your body moves forward. Going backwards, your potential energy decreases and increases in kinetic energy. Whether you're increasing or decreasing in kinetic or potential energy, the increase or decrease is the same amount of either energy. So for example, the amount of kinetic energy you lose is the amount of potential energy you will obtain.

  3. blog-0128491001370815340.jpg Wind is the flow of gases on a very large scale. Wind is caused by the differences of pressure in the earth’s atmosphere. Wind is caused by two major factors on the planet earth. The first being the sun and the second being the rotation of the planet. The sun does not heat up the earth’s atmosphere evenly, as most of the solar energy is absorbed at the equator. When the air becomes heated it expands creating an area of higher pressure. Diffusion causes this area of higher pressure to move to an area of lower pressure. On a very large scale this would massive amounts of air to travel from one area to another, creating vast amounts of kinetic energy that can be harnessed by humans through the use of a wind turbine.

    A wind turbine is used to harness the kinetic energy of vast amounts of wind, and transform it into electricity. This can be shown with a very simple calculation. First we need to remember that wind is an air mass moving from an area of high pressure to an area of low pressure. This movement of air is kinetic energy and can be shown by the formula:

    KE= 1/2 MV^2

    KE= kinetic energy

    M= Mass

    V= Velocity

    Thanks for Reading :)

    • 31
      entries
    • 20
      comments
    • 4515
      views

    Recent Entries

    jrwalther
    Latest Entry

    This week I focused on chapter 5 in Mechanics.   This included momentum and impulse, conservation of linear momentum and center of mass.

    Areas that went well for me were momentum and impulse and conservation of linear momentum.  What helped me to really understand these two topics were first understand the graphs that went along with them.  This included Force vs. Time graphs showing the impulse to be the area under it.  These graphs gave me a better understanding of what I was solving for when I got to problems.

    Center of mass was the topic I had the most difficulty with.  However plotting the points on a graph helped me with this as well.  The equation Xcm= (m1x1+m2x2).../m1+m2... really helped me understand finding the center of mass of different points.  Finding it for other objects such as rods however was still quite challenging.

    My major key to success this week was working more with graphs.  Once I understood graphs whether it be just plotting point or graphs such as Force vs. Time, they all helped me get a better understanding of the topic I was working on.   

  4. Physics of Swimming

    When i first looked up the physics of swimming, i got many different answers. There were many different ways that swimming can tie into physics. I am going to give a formula that is on the refrence table and can relate to because weve used it in physics class before.

    To kick 100 meters it takes 80 seconds. When kicking, a swimmer can travel at a velocity of 1.25 m/s. To pull 100 meters it takes 60 seconds. When pulling, a swimmer can travel at a velocity of 1.6 m/s. To swim 100 meters with both the arms and the legs it would take 50 seconds. When swimming using both the arms and the legs, a swimmer has a velocity of 2 m/s. The arms therefore generate more propulsion than the legs. The propulsion generated by the legs is 62%. The propulsion generated by the arms is 83%. The ratio of pull to kick is 1.3, meaning that the pull is 1.3 times greater than the kick. Water applies a force perpendicular to each surface of the swimmer's body.

    F = PA

    The force acting perpendicular to the surface of the swimmer's body is equal to the pressure acting on the swimmer mulitiplied by the surface area. For example, if the Pressure acting on the back of a swimmer's hand 1.3 x 10^5 Pa and the surface area of the back of the hand is 8.3 x 10^-3 m^2 then the equation F = PA would yield:

    F = (1.3 x 10^5 Pa) * (8.3 x 10^-3 m^2) = 1079 N.

    As you can see alot of the information would just be plugging in the informations thats given to you. You can also see that it takes alot of work to swim, its also been said that swimming is the best workout you could do for your body.

    I hope i have opened your eyes to a new way of thinking about swiming, especially with sumer coming up, thank you for reading my blog :)

  5. Lots of people have heard the word “superconductor.” But, not too many people really know what they are or how they’re made.

    A superconductor is an occurrence of exactly 0 internal resistance to electrical charges and the removal of interior magnetic fields, known as the Meissner Effect. During this change, all magnetic flux within the material is transferred to the outside, greatly multiplying the outside field. Super conductance was discovered in 1911 by Dutch physicist Heike Kamerlingh Onnes. And, it’s actually a phenomenon of quantum mechanics.

    Superconductors are made when a material is cooled to below that material’s critical temperature. And, they can break down once the magnetic field around them grows too great as well. There are currently two classes of superconductor based on how they break down. Type I superconductors abruptly stop conducting in this way if the field breaches a certain threshold value. Type II superconductors begin to accept magnetic flux back into the material above the threshold point, but retain their 0 resistivity. It is because of these quirky effects that superconductors cannot simply be seen as perfect, or ideal, conductors, but rather entirely separate phenomena.

    Scientists still study superconductors and their applications in depth today. In 1986 ceramic materials were shown to have very high critical temperatures, ones that were theoretically impossible, and were dubbed high-temperature superconductors.

    Nowadays superconductors are used in particle accelerators and mass spectrometers due to their incredible power as electromagnets. However, they have all kinds of fascinating circuitry and quantum mechanics applications. Feel free to investigate yourself, but for now, enjoy a video of a superconductor floating above a magnet, known as quantum levitation.

     

     

     

  6. reedelena
    Latest Entry

    Positive charges their electric fields are pointed out away from the charge. A negative charge their electric field is pointed toward the charge. When a positive and a negative charge are brought close together they will be drawn toward each other, they are magnetic. The electric fields never cross each other when they are magnetic. When you bring a magnetic positive charge and a positive charge together they will be repulsive, the same holds true if you bring a negative charge and a negative charge together. They are repulsive charges. The equation for electric field strength is E=Fe/q.

  7. MyloXyloto
    Latest Entry

    Hey, do you know whose birthday it is? It is the one, the only, Johann Carl Friedrich Gauss! He was born 241years ago today! Since Gauss' Law helps us solve problems with cylindrical, spherical, and planar symmetry, I thought it would only be right to wish him a happy birthday! Thanks Gauss!

     

  8. As someone who is extremely afraid of heights, it is highly unlikely that I will ever go skydiving. However, that doesn't mean I can't appreciate the physics of it. For instance, skydivers accelerate when they go down because the force of gravity is greater than the drag on their bodies. Also, the acceleration in question will always be 9.81 m/s^2 as that is the acceleration due to gravity. But when the parachute is opened, the increase in surface area creates an increase in drag, therefore making the skydiver slow down.

  9. Image result for mario kart wii rainbow road gif

    Mario Kart was (and still is) the greatest game of all time, and there is a surprising amount of physics involved – not the part about falling off the edge of rainbow road and then magically reappearing back on the track though.

    Mario Kart uses Newton’s laws. The use of Newton’s first law proves why in order to get moving you have to press a button to accelerate, and when you let your finger off the button, you don’t just automatically stop, you just slow down. Newton’s second law shows how if you use a cart with a greater mass, you need a greater force to get the kart moving with the same acceleration.

    Mario Kart also uses elastic and inelastic collisions. An elastic collision occurs when two karts run into each other. They both don’t stick together following the collision, but they bounce away from each other. An inelastic collision occurs when two karts collide and the one with the thunder colt transfers to the other kart and now the thunder cloud is stuck to the other kart.

    While Mario Kart is mostly fictional – with flying blue shells, mystery boxes, and magically coming back to life after falling off into vast darkness – there is still a lot of subtle physics involved.

  10. So everytime I need to make blog posts I always try to connect what we have been learning in physics to my favorite sport: softball. Now you might think that there are no waves in softball but I am creative and I believe I have found some sort of wave while playing softball. When people throw a softball really high it creates a giant lob that looks like a parabola. And this lob could also look like a half a wave. And if you measured from the ground to where the highest part of the ball reached, you would get the amplitude. But of course, the so called wave would never be finished you would only get to a half a wave and then the ball would hit the ground and die. But today we learned about reflection and could be applied to softball as well. When the ball hits the ground it will be reflected back at the same angle. So I the ball was thrown at a sharp angle measured to the normal line like 70 degrees. The ball would bounce back at that same angle. So while fielding, depending on how the ball hit the ground, you could prepare yourself for where the ball will jump next. Physics can improve your fielding skills.

  11.  

    The most profound idea that can occur to any mind is that of the cyclic nature of time, fate and regeneration. Even though it is evident in scientific things like the first law of thermodynamics and the ultimate and imminent destiny of a cyclic universe, one needs only recognize that their apparent existence implies the intrinsic possibility that their existence, as it is in that instant, is able to recur again and has occurred infinitely many times before as it does in that moment. The permutations of thermodynamic microstates must eventually repeat themselves, creating identical states or systems. This recurrence and successive permutations also suggest a multiverse-like phenomenon where everything is comically “the same but different” trope to a T. It evokes that bit of wisdom, “The world is indeed comic, but the joke is on mankind” from H.P. Lovecraft, a figure of honor, which is the grand summation of fate and return. Every struggle against the human soul is doomed to repeat for all time, a conclusion so spectacular and significant that I believe it is truly capable of making men thoroughly mad. 

    Personally, I wonder how this wisdom weighs on my humanity. My life and what is essentially myself will recur in an infinite permutation of recursive universes each of an unremitting nightmare-future. I found not many people who understand this or are ready to accept it which makes me feel dry amused at the notion I am profoundly wrong. 
     

  12. FaithDemo06
    Latest Entry

    Ah yes, my favorite type of waves. Wi-Fi. Its a beautiful thing, these modulated electromagnetic waves allow you to stream movies and gain access to the internet with out being plugged in. Once only a coffee shop novelty, it can now be found in every house across the country. But how does it work? Wi-Fi can cover as much as an entire school, or building, depending on the frequency of course. Wi-Fi is a type of wave that can penetrate walls and ceilings, as well as cross rivers and high traffic areas. The Wi-Fi signal is composed of large numbers of different frequencies in order to reject noise in any of them. Also certain materials can make it harder for wi-fi to travel, and also other waves (this is the reason for channel settings) can interfere with Wi-fi too.

  13. I just hit a parked car (I did not do a hit and run i waited and hour for the people to come to there car) I was trying to pull around a bend into a front row spot i thought i cleared the car that was next to mine. Unfortunately, my depth perception was wayyyyy of! Because i drive a big truck it was hard to judge the distance between my car and the tiny little car that i hit. I then hit the car and the energy from my car was transferred from my car to the tiny car. The tiny car then moved after my car hit it and stopped. Then i went into reverse and pulled into the spot to asses the damage that was done. I look at the little car. The dent on its bumper was as deep as a giant cereal bowl. Like you could eat 2 servings of your lucky charms out of it. After the panic was gone i realized how much physics was involved in stupid mistake. Anyways, I then thought oh god i can't even imagine what my car looks like! I then walk to the front corner of my front bumper to see the damage. My ol trusty rusty only had a scratch on it no dent at all. I thought how could this be then I realized that the Force i applied on the tiny car must have been so much because my car was so much bigger. Fnet= Ma. So I was taking a corner at a speed/velocity of 4 m/s.The mass of my car is 2143.22 kg. and I was accelerating at a speed of about 4 m/s squared. therefore the force applied to little car 8,572.88 newtons. Then i though about how my car made the little car move! Bucky must have had to put forth a lot of work. Bucky is the name of my car. Work, W=fd. The displacement from where my car was and by the time i hit the tiny car was probably about 1 meter. So the work exerted by Bucky 8,572.88. N Thats a lot of work! poor Buck! SO the morel of the story is never go for the front row spot! Park out in east jesus because trust me the walk will be much better than exchange insurance info with a pissed off lady.

  14. Ever since I was little, I've been interested in thunder and lightning. The lightning would always crack across the sky and that would be followed by a boom of thunder. When i was young, I neve knew why these things happened or anything about sound and light. But now as a student of physics, I know some interesting facts about these occurances.

    Light and sound are both a very big part of our everday life. Without them, life would be very different. Light travels faster than sound. That's why you experience lightning before thunder. Light can travel at about 299792458 meters per second. While sound travels at about 340.29 meters per second. This difference in speed is huge. There is supposedly nothing that can travel faster than light.

    If you put a lamp in a vacumn, you'd still be able to see the light it produces. If you put your iPod in a vacumn and played your favorite song, no sound would be produced. This is because sound cannot travel through a vacumn, but light can.

    To this day I'm still intrigued by thunder and lightning, but knowing the science behind them is pretty cool too.

  15. Not that long ago I came up with a fun project idea when I was bored. I had some spare speakers laying around and felt like a fun thing to do would to add them to my current speaker system to help fill the room with sound better. To do this I drilled small holes in the back of my current computer speakers and then connected some wire in parallel, I then ran this wire through the ceiling and then soldered the leads to the speakers. By connecting them in parallel I reduced the resistance of the circuit but I also increased the current, thanks Ohms law! I thought this was all good, but then my dad brought up a good point, would the increase in current cause the amp in the speakers to blow. To my luck it seems like it all worked out fine as a few weeks later the speakers are working just as they were before. Another bit of physics that helped me in this project is magnetism. At the back of all speakers there is a sizable magnet used to vibrate the membrane and create the frequency of the music.  I used this magnet as a form of mounting, I have ceiling tiles in this room so I just stuck the speakers to the ceiling where the metal was in the ceiling and I was done!

  16. Mankind likes big things. We like gigantic iPhones, Venti Lattes, and skyscrapers. The pyramids of Egypt represent perhaps man's earliest obsessions with making big things. As children, we stack wooden blocks until they topple and injure the cat. We are a species obsessed with bigness. But how big could we build? The current tallest building in the world is pretty big, but it's miniscule compared to the towering peak of Mt. Everest. The world's tallest buildings keep getting bigger, but eventually there comes a point when it is impossible to keep building upward. Or is there? In 1895, Konstantin Tsiolkovsky proposed a structure known as a space elevator. Such a structure would begin on Earth and stretch all the way out into outer space. But wouldn't it crumble under its own weight? Normally yes, but this isn't your average game of Jenga. A structure in orbit experiences an apparent centrifugal force that increases the farther out in space an object gets. How and why demands a separate blog post, but given that parameter, a structure as tall as a space elevator would be able to support its own weight because the top section would experience a net force outward that cancels out the gravity that would cause the structure to topple. Therefore, it would theoretically be possible to create a space elevator. Unfortunately, there would still be a ton of forces involved, making most materials useless. However, scientists have postulated that carbon nanotubes might be strong enough to be used in such a project. Even so, the space elevator is a long ways away, but should it come to fruition, it would make transporting packages into space immensely less expensive. Plus, it would probably look awesome.        

  17. When professional tennis players serve , the ball usually goes anywhere from 120 to 163.4 MPH (fastest recorded in history) which is pretty darn fast. They try to serve the ball as close to the net as they can so their opponent has a harder time of returning it. The closer to the net makes it so the angle to the incident is greater. The bigger the angle of incident is, the closer the ball is to the ground because it is measured against a right angle with the ground. If there is a small angle of incident, that means the ball bounces more vertically and is easier for the opponent to put away and possible smash into your face which is their point. That is why tennis players try to get the ball as close to the net as they can.

  18. ever play with a slinky by pushing it down the stairs? well that's not all you can do with slinkys you can learn about waves with them. if two people hold each end of the slinky then move the slinky up and down then you can see a transverse wave that is a mechanical wave to because it have a medium (the metal). You can create all types of frequency's and amplitudes by either moving your hand up and down faster or slower. another wave you can see is a longitudinal wave by pulling the slinky together then letting go. you will see that the wave moves in the same way the velocity does. it doesn't move up and down it moves side to side. so next time you play with a slinky try to create some waves because you will be able to learn something's while having fun!

  19. srossi14
    Latest Entry

    Did anyone else watch that show Minute to Win it? As I was trying to think of something the write my last physics blog post about I thought of one task in particular that contestants were asked to complete. The game was called “Tipsy.” To win, the contestant had to balance three soda cans on their edge by drinking some of the soda to the perfect level. The reason that this task is possible is because of physics and center of gravity. As the amount of soda in the can decreases, the center of gravity of the tilted can shifts as the weight of the can changes due to less liquid, and eventually it is able to align with the vertical line up from the balanced edge of the can. So I was going to just attach a video of the "blueprint" for the task but I found a video of a bunch of college students getting real hype about it so I decided to include that instead:)

     

     

     

  20. Hey Mr. Fullerton and anyone whos reading this, its been a pleasure grinding this year. Hope you enjoy this great video and maybe even chuckle a bit. 

     

  21. A roller coaster typically begins with a chain and motor exerting a force on the cars to lift the train to the top of the first hill of the ride, which is also the tallest. Once the train makes it to the top and is pushed over the top of the hill, gravity takes over and it becomes an experience of energy transformation.

    At the top of the hill, the cars possess a large sum of potential energy. That potential energy is equal to the mass and height of that object. After the first drop the cars lose a lot of this potential energy because of the loss of height, but they gain Kinetic energy, the energy of motion. Kinetic energy is equal to the mass and velocity of the object. So throughout the ride the initial Potential energy is just lost then gained, lost then gained until the end of the ride.

    Below is the worlds tallest roller coaster, The King da-ka, located at Six Flags Great Adventure in NJ. With a height of 139m. At launch you are traveling at 206km/h. Only 10 Km/h less than a Cessna 182, a single propeller airplane.

  22. When light is hitting you it is actually waves or particles of matter. This is because light is matter and light is waves.

    Young's double slit experiment is what can prove light is a wave. He projected light through walls with two narrow slits in them. The result on the wall behind is interference patterns which shows that when the waves of light go through the slits they interfere and cross each other. This also shows diffraction which is the bending of waves around obstacles or spreading of waves when they pass through an opening. Another thing that proves light is a wave is red and blue shifts. When a star is moving very quickly at us it appears to us bluer than it actually is because the wavelength decreases.

    The Compton effect proved that light is a particle because it shows that light has momentum.The photo electric effect is when light is shined at a thin piece of metal the photons knock electrons out of the metal. This shows that electrons are pieces of matter because they have momentum.

  23. blog-0721020001368805932.jpgyou probably always woundered how we could see out of our eyes. At least EYE always have..... of course there has to be some sort of physics to it right? well of course there is and refraction is there to prove it. Refraction is the phenomenon which makes image formation possible by the eye as well as by cameras and other systems of lenses.

    Most of that refraction in the eye takes place at the first surface, since the transition from the air into the cornea is the largest change in index of refraction which the light experiences. About 80% of the refraction occurs in the cornea and about 20% in the inner crystalline lens.

    While the inner lens is the smaller portion of the refraction, it is the total source of the ability to accommodate the focus of the eye for the viewing of close objects. For the normal eye, the inner lens can change the total focal length of the eye by 7-8%. Common eye defects are often called refractive errors and they can usually be corrected by relatively simple compensating lenses.

    Light that passes through the pupil opening, will enter the crystalline lens. The crystalline lens is made of layers of a fibrous material that has an index of refraction of roughly 1.40. Unlike the lens on a camera, the lens of the eye is able to change its shape and thus serves to fine-tune the vision process. The lens is attached to the ciliary muscles. These muscles relax and contract in order to change the shape of the lens. By carefully adjusting the lenses shape, the ciliary muscles assist the eye in the critical task of producing an image on the back of the eyeball.

  24. In the last decade, the uprise of mobile devices with touchscreens has been prominent, and there are 2 main types of touchscreens. The first, and cheaper style, is known as resistive, which uses 2 separated films that when come in contact they allow current to flow. This is what is used to determine the location of the touch, as wherever the current is flowing is where the user is currently touching. The issue with this system is that it requires physical movement of the plates, meaning it can be triggered by anything pushing it together, also if it's layers are no longer even they can touch if nothing is pushing on them, causing unwanted actions. The solution to these issues is the more complicated design, known as capacitive touch. This uses a system of 4 capacitors on each corner, and when the touch occurs, based on how the capacitance changes, the computer system can determine the position of the touch. This is exceptionally useful for avoiding accidental touches, and for creating a much more durable touch surface. Also, it enables much more precision and ease of use to the user, as they don't have to physically move anything, and so there is less to go wrong. The disadvantage of this is that water and anything else conductive greatly reduces the accuracy and usability of such a touch screen, as it messes with the currents. Thanks to this kind of technology, it is much easier for us to use our mobile devices with ease and precision.

  • Recently Browsing   0 members

    • No registered users viewing this page.
×
×
  • Create New...