Jump to content
Sign in to follow this  
  • entries
    3
  • comments
    6
  • views
    156

The Physics Behind an MRI

Sign in to follow this  
krdavis18

67 views

This week on Wednesday, I had to get an MRI for my knee to make sure everything was ok after I injured myself playing soccer a couple weeks earlier. While I was there, I was very curious about how the whole process worked and how it relates to physics so I did some research and here is what I found.

In an article from medicalnewstoday.com titled MRI Scans: All You Need To Know by Peter Lam, I learned that "an MRI scanner contains two powerful magnets" and "upon entering an MRI scanner, the first magnet causes the body's water molecules to align in one direction, either north or south." So this is why I had to take off my earrings before going into the scanner because otherwise it would've been attracted to the magnet and cause problems. 

I then learned that "the second magnetic field is then turned on and off in a series of quick pulses, causing each hydrogen atom to alter its alignment and then quickly switch back to its original relaxed state when switched off. The magnetic field is created by passing electricity  through gradient coils, which also cause the coils to vibrate, resulting in a knocking sound inside the scanner." This would explain why the machine was so loud and I had to wear headphones to block out the noise. But luckily, I got to listen to some country music to block out the sound of the banging. 

The scanner then detects these changes "and, in conjunction with a computer, cman create a detailed cross-sectional image for the radiologist to interpret." Lucky for me, my MRI showed that my knee looked very good and my injury was most likely a bone bruise. 

MRI's are very helpful tools for diagnosing patients and getting a better look inside the human body and I can appreciate knowing a little bit more about how they work!

Visit: https://www.medicalnewstoday.com/articles/146309.php to read the full article. 

  • Like 1
Sign in to follow this  


2 Comments


Recommended Comments

This was a really awesome read! It reminds me of a video I saw a few weeks back, and while it isn't as informative, the experiments are really cool. The power these magnets have is simply incredible...

 

Share this comment


Link to comment

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now

Terms of Use

The pages of APlusPhysics.com, Physics in Action podcasts, and other online media at this site are made available as a service to physics students, instructors, and others. Their use is encouraged and is free of charge. Teachers who wish to use materials either in a classroom demonstration format or as part of an interactive activity/lesson are granted permission (and encouraged) to do so. Linking to information on this site is allowed and encouraged, but content from APlusPhysics may not be made available elsewhere on the Internet without the author's written permission.

Copyright Notice

APlusPhysics.com, Silly Beagle Productions and Physics In Action materials are copyright protected and the author restricts their use to online usage through a live internet connection. Any downloading of files to other storage devices (hard drives, web servers, school servers, CDs, etc.) with the exception of Physics In Action podcast episodes is prohibited. The use of images, text and animations in other projects (including non-profit endeavors) is also prohibited. Requests for permission to use such material on other projects may be submitted in writing to info@aplusphysics.com. Licensing of the content of APlusPhysics.com for other uses may be considered in the future.

×