Jump to content
  • entries
    10
  • comments
    10
  • views
    582

What Is This and Why Is It Important?

Sign in to follow this  
ThePeculiarParticle

80 views

kIq6vyagCc3zDet9rfminOzSER30FKU9bCYEi6TyPJRlECTxaFijyQvjxuMBj86l9hUiuyek2ktJeyAdc69I9XmtW_AMNziCYWIrloUey6mLc-KW2oSwhZy-KUy8QisXCWGaBxFH

What is this?

Over the summer I participated in Photon Camp at  the University of Rochester with a few classmates. It was an awesome experience by the way! The main reason I’m here is to talk about the project I worked on in a group of 4. Each student had a different project. So, if you need an idea for a blog post, there you go.

My group was studying photolithography which is the process of creating patterns using light. We worked with Professor Bryan McIntire and were able to go into the clean room and actually perform the process on a series of silicon wafers coated in the photoresist. The first step was to coat the plate in primer, which applied via spin adhesion, so that a layer 1.4 micrometers thick was evenly spread across the surface. Then it was time to perform the actual process.

The main component which allows this process to work is the photoresist. There are two kinds: positive, which breaks down when exposed to light, and negative, which polymerizes when exposed to light. We used a negative photoresist when exposing our wafers to light.

We performed two different processes when exposing them. In the first, UV light can be run through a mask, projecting the image of the mask onto the surface coated in the photoresist.  The other option was to laser-write, by placing the wafer under a 405 nanometer laser, exposing the wafer in a designated pattern. The chemical structure of the photoresist is changed, becoming soluble and then is washed away, revealing the Silicon Dioxide layer underneath. The etching process is next, using Hydrofluoric acid to wash away the Silicon Dioxide. Afterwards, the wafer is washed with Acetone, removing the protective layer, and showing the true colors of the wafer. If the piece is multiple layers, then Hydrofluoric Acid would be withheld and another layer of  Silicon Dioxide can be placed over the first layer to act as a base layer for photoresist to be applied onto. In the final step, the Silicon Dioxide between layers is removed, leaving only silicon, creating the final product.

 

So why is this important?

 

Large amounts of energy and money go into cooling the information systems we use on a daily basis. As internet usage increases so will the amount of facilities and power needed to support this. It is theorized this system will not be viable in the future without breakthroughs in energy production, but photonics may promise another solution. Using photonics to transmit information does not create nearly as much heat, causing many scientists to look to it as a way to alleviate the dependence on energy used to cool electronics.

 

The process of making technology more compact is hindered greatly by the amount of transistors which would be located on an integrated circuit. A concept referred to as Moore's Law states that the amount of transistors on a given area for the same price doubles every two years. The process of photolithography is the next step in this process as the resolution achieved using smaller wavelengths allows for a dramatic increase in the concentration in the amount of transistors placed. The resolution achieved by EUV radiation can be 18nm. Looking further past this, in order to get an even better resolution, a process using an electron beam would be needed.  Photonics may hold the solution to the problem it has created.

 

Equation for resolution (how small the patterns can be) R~ (Wavelength)/(Numerical Aperture)  

 

Here are some pictures of the wafers we made:

 

This is the first plate which we made light channels on.

bgVFmED-HAGA6iMbqazDP6gcFswA4ZHOaXOdotzqUkWhxssT3_pI3197Jqfj4maGvDZjsXJvo3WaX6CcIlI6PA5GvO33knJNwlKz-baR80X6E3h6egRQSSslFC7SaKammukSNBzc

This image shows two waveguides(light tunnels) converging.  Each waveguide measures 2 microns across. Some professors use this to study how light rays behave as they get close to one another.

 

This is the second plate that had a series of patterns etched onto it in order to create different types of diffraction gratings.

PhfW9oIjdf-hvK9iuV0oXYAWVYVh0slnlj4tXQ79HdEsWCD3auGUZ3PpqF2O09ftXb2CDCi9oBe3dRYBZnG4cixtcyoh0K8i_jpA-khaH3gf_UPpkbSTWcNc-wcPS_odaYt767Zt

These dots were made by drawing lines 5 microns wide and are the same ones shown in the first image of this blog.

 

J1MBPbuF1o7DR9UoDEfKHl665OPR9TNw6PspF7b3bQnpaaeo_MgIbpYsy2VBX9wJaxdHeti3K8nQsQtYVZKD5hJ6gY5jBpt84EgNYPhJwFAQFB2vec-twB3kgPOeOZh88aEkAkKq

This picture shows the edge of a horizontal diffraction grating.



 

And finally this is the third plate which the universities crest was etched on.

image.png.4e3356e34689ef7098ec62df999410e1.png

 

Thanks for reading, and if you have any younger siblings interested in the camp I highly recommend it!

 

-ThePeculiarParticle

Sign in to follow this  


2 Comments


Recommended Comments

Love this!  My background is in microelectronic engineering, and I'm even in the middle of putting together a 2-hour workshop on microelectronics (presentation is in December) that will cover much of what you did over the summer.  Great discipline, with TONS of fantastic jobs that are fun, challenging, and rewarding.  We'll have to talk more...

  • Like 1

Share this comment


Link to comment

Thank you FizziksGuy! It sounds like you have a lot of passion for the field. I look forward to talking with you and hearing about your past experiences.

Share this comment


Link to comment

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now

Terms of Use

The pages of APlusPhysics.com, Physics in Action podcasts, and other online media at this site are made available as a service to physics students, instructors, and others. Their use is encouraged and is free of charge. Teachers who wish to use materials either in a classroom demonstration format or as part of an interactive activity/lesson are granted permission (and encouraged) to do so. Linking to information on this site is allowed and encouraged, but content from APlusPhysics may not be made available elsewhere on the Internet without the author's written permission.

Copyright Notice

APlusPhysics.com, Silly Beagle Productions and Physics In Action materials are copyright protected and the author restricts their use to online usage through a live internet connection. Any downloading of files to other storage devices (hard drives, web servers, school servers, CDs, etc.) with the exception of Physics In Action podcast episodes is prohibited. The use of images, text and animations in other projects (including non-profit endeavors) is also prohibited. Requests for permission to use such material on other projects may be submitted in writing to info@aplusphysics.com. Licensing of the content of APlusPhysics.com for other uses may be considered in the future.

×