All Activity
This stream autoupdates
 Today

Edwin Green joined the community

Kevin Baker joined the community

DanielaFuller changed their profile photo
 Yesterday

Monika Vasili joined the community

Chimuka K Garnett changed their profile photo

Dannyhelou9 changed their profile photo

Hannah Sorley joined the community

Montrose High School joined the community

Analis changed their profile photo

Heather joined the community

pshanthakumar joined the community
 Last week

Tina Walters joined the community

A problem involving forces on a wrench is used to determine the torque exerted by the wrench. A “cheater pipe” is also added. Want Lecture Notes? This is an AP Physics 1 topic. Content Times: 0:07 Translating the problem 2:35 Solving the problem 3:06 Arguing about the angle 4:44 Adding a “Part B” 5:40 Demonstrating the “cheater pipe” Multilingual? Please help translate Flipping Physics videos! Previous Video: Torque Introduction Please support me on Patreon! Thank you to Christopher Becke and Scott Carter for being my Quality Control Team for this video.

 cheater pipe
 wrench

(and 4 more)
Tagged with:

MayankRathi changed their profile photo

mattdhar joined the community

Rachel Campbell joined the community

AppleAlmazan changed their profile photo

hsnowman changed their profile photo

Tawfiq changed their profile photo

DaveSkittles changed their profile photo

SherryLiang changed their profile photo
 Earlier

Translational and Rotational motion are demonstrated and reviewed. Torque is introduced via the equation and several door opening demonstrations. Moment arm or lever arm is defined and illustrated. Want Lecture Notes? This is an AP Physics 1 topic. Content Times: 0:06 Translational and Rotational Motion 0:58 Defining Torque 1:53 The torque equation 2:59 Door example #1 4:56 Door example #2 6:11 Door example #3 6:58 Defining moment arm 9:18 Torque units Next Video: An Introductory Torque Wrench Problem Multilingual? Please help translate Flipping Physics videos! Previous Video: Moments of Inertia of Rigid Objects with Shape Please support me on Patreon! Thank you to Christopher Becke and Scott Carter for being my Quality Control Team for this video.

 door
 demonstration

(and 6 more)
Tagged with:

The moment of inertia of a system of particles equation is used to estimate six different moments of inertia of rigid objects with constant density. Want Lecture Notes? This is an AP Physics 1 topic. Content Times: 0:10 Visualizing the examples 1:09 How we estimate 2:16 Thin rod  center of mass 2:57 Thin rod  one end 4:00 Thin, hollow cylinder  long cylindrical axis 6:32 Solid cylinder  long cylindrical axis 8:23 Solid sphere  center of mass 9:11 Thin, hollow sphere  center of mass 10:31 Important review points Next Video: Torque Introduction Multilingual? Please help translate Flipping Physics videos! Previous Video: Eggs in a Carton Moment of Inertia Problem Please support me on Patreon! Thank you to Christopher Becke, Andres Ramos, and Aarti Sangwan for being my Quality Control Team for this video.

 thin ring
 solid disk
 (and 14 more)

Two equal mass eggs are placed at either end in an egg carton of negligible mass. The egg carton is initially rotated about its middle. If the egg carton is now rotated about one end, what is the final moment of inertia of the eggs relative to their initial moment of inertia? Want Lecture Notes? This is an AP Physics 1 topic. Content Times: 0:07 Translating the problem 0:47 Initial moment of inertia 1:52 Final moment of inertia 2:46 This is a rough estimate Next Video: Moments of Inertia of Rigid Objects with Shape Multilingual? Please help translate Flipping Physics videos! Previous Video: Introductory Moment of Inertia and Rotational Kinetic Energy Problem Please support me on Patreon! Thank you to Christopher Becke for being my Quality Control Team for this video.

 problem
 moment of inertia
 (and 3 more)

Introductory Moment of Inertia and Rotational Kinetic Energy Problem
Flipping Physics posted a video in Rotational Motion
Three 20.0gram masses are 9.4 cm from an axis of rotation and rotating at 152 revolutions per minute. What is the moment of inertia of the threeobject system? The strings holding the masses are of negligible mass. Rotational Kinetic Energy is also solved for and correct units are determined. Want Lecture Notes? This is an AP Physics 1 topic. Content Times: 0:02 Demonstration 0:14 Translating the problem 0:57 Solving the problem 2:40 Moment of Inertia and angular velocity 3:35 Rotational Kinetic Energy 4:04 Fixing the units 6:27 Solving for joules 7:17 Comparing to Gravitational Potential Energy Next Video: Eggs in a Carton Moment of Inertia Problem Multilingual? Please help translate Flipping Physics videos! Previous Video: Moment of Inertia Introduction and Rotational Kinetic Energy Derivation Please support me on Patreon! Thank you to Scott Carter, Jonathan Everett, and Christopher Becke for being my Quality Control Team for this video.
 demonstration
 problem
 (and 5 more)

Moment of Inertia Introduction and Rotational Kinetic Energy Derivation
Flipping Physics posted a video in Rotational Motion
The concept of kinetic energy applied to a stationary, rotating wheel is used to define Moment of Inertia and derive Rotational Kinetic Energy. Moment of Inertia is demonstrated. Want Lecture Notes? This is an AP Physics 1 topic. Content Times: 0:07 Kinetic Energy of rotation 2:24 Defining Moment of Inertia 3:00 Defining Rotational Kinetic Energy 4:29 “Rotational Mass” 5:44 Demonstration #1 6:45 Demonstration #2 Next Video: Introductory Moment of Inertia and Rotational Kinetic Energy Problem Multilingual? Please help translate Flipping Physics videos! Previous Video: Conical Pendulum Demonstration and Problem Please support me on Patreon! Thank you to Scott Carter, Kevin Kulka, Jonathan Everett, and Christopher Becke for being my Quality Control Team for this video.
 definition
 demonstration
 (and 7 more)


 projectile motion
 plumb
 (and 5 more)

Throwing a Ball in a Boat  Demonstrating Center of Mass
Flipping Physics posted a video in Dynamics
When I throw a massive ball to the left such that it lands in the other end of the canoe, what will happen to the positions of the objects? What if the ball does not land in the canoe? This video provides answers and solutions to those questions. Want Lecture Notes? This is an AP Physics 1 topic. Content Times: 0:01 Ball lands in canoe center of mass question 0:52 Demonstrating the answer 1:16 Explaining the answer 3:31 What is the ball lands outside the canoe? 4:28 Demonstrating the answer 5:08 The math solution 8:03 The physics works! Multilingual? Please help translate Flipping Physics videos! Previous Video: Center of Mass of an Object with a Hole Please support me on Patreon! Thank you to Will Longsworth, Christopher Becke, Jonathan Everett, Scott Carter, and Aarti Sangwan for being my Quality Control Team for this video. Thank you to Youssef Nasr for transcribing the English subtitles of this video.
 center of gravity
 newtons second law

(and 4 more)
Tagged with:

aconner0418 started following AP Physics 1/2

How to find the center of mass of an object with a missing piece. Want Lecture Notes? This is an AP Physics 1 topic. Content Times: 0:07 The problem 1:18 Center of mass locations 2:59 Solving the problem 5:14 Testing the answer Next Video: Throwing a Ball in a Boat  Demonstrating Center of Mass Multilingual? Please help translate Flipping Physics videos! Previous Video: Center of Mass of an Irregular Object Please support me on Patreon! Thank you to Christopher Becke, Jonathan Everett, and Scott Carter for being my Quality Control Team for this video. Thank you to Youssef Nasr for transcribing the English subtitles of this video.

 projectile motion
 hang test
 (and 9 more)

How to find the center of mass of an irregularly shaped, flat object. Want Lecture Notes? This is an AP Physics 1 topic. Content Times: 0:08 The problem 0:57 Translating the problem 2:52 Area instead of mass 4:42 Solving the problem 6:05 Understanding the answer Next Video: Center of Mass of an Object with a Hole Multilingual? Please help translate Flipping Physics videos! Previous Video: Calculating the Center of Mass of a System of Particles Please support me on Patreon! Thank you to Christopher Becke, Jonathan Everett, Scott Carter, and Aarti Sangwan for being my Quality Control Team for this video. Thank you to Youssef Nasr for transcribing the English subtitles of this video.

 projectile motion
 hang test
 (and 7 more)

Three point objects are located at various locations on a Cartesian coordinate system. Mass 1, with a mass of 1.1 kg, is located at (1.0,1.5) m. Mass 2, with a mass of 3.4 kg, is located at (3.0,1.0) m. Mass 3, with a mass of 1.3 kg, is located at (1.5,2.5) m. Where is the center of mass of the threeobject system? Want Lecture Notes? This is an AP Physics 1 topic. Content Times: 0:07 The problem 2:30 The equation 4:16 Solving the problem 5:51 Not the centroid! Next Video: Center of Mass of an Irregular Object Multilingual? Please help translate Flipping Physics videos! Previous Video: Do Your Feet Affect How Far You Slide on a Water Slide? Please support me on Patreon! Thank you to Christopher Becke, Jonathan Everett, Scott Carter, Kathy Willard, and Kevin Kulka for being my Quality Control Team for this video. Thank you to Youssef Nasr for transcribing the English subtitles of this video. Picture credits: Cartesian Coordinate System https://commons.wikimedia.org/wiki/File:Cartesiancoordinatesystem.svg René Descartes https://commons.wikimedia.org/wiki/File:Frans_Hals__Portret_van_René_Descartes.jpg

 example
 center of mass
 (and 6 more)

Harnessing the Power of Spreadsheets in Physics
Flipping Physics posted a video in Introductory Concepts
Basic demonstration of how to use spreadsheets in an introductory physics class. Topics listed below. This is an AP Physics 1 topic. Content Times: 0:33 Basic data collection 0:58 Inputting data 3:45 Equations 8:39 Graphs or charts 12:40 Correcting mistakes 14:08 Formatting charts 15:23 Bestfit lines or trendlines 19:52 Helpful tips 21:50 Printing Multilingual? Please help translate Flipping Physics videos! Another Video: Introduction to Projectile Motion Please support me on Patreon! Thank you to Scott Carter, Christopher Becke, and Sawdog for being my Quality Control Team for this video. Thank you to Youssef Nasr for transcribing the English subtitles of this video.
 formatting
 charts
 (and 11 more)

Creating Circular Motion from Sine and Cosine Curves
Flipping Physics posted a video in Oscillations
Demonstrating how sine and cosine simple harmonic motion waves can create circular motion. Want Lecture Notes? This is an AP Physics 1 topic. Content Times: 0:01 yposition 0:31 xposition 1:35 Combining motions Multilingual? Please help translate Flipping Physics videos! Previous Video: Demonstrating Position, Velocity, and Acceleration of a MassSpring System Please support me on Patreon! Thank you to Scott Carter, Christopher Becke, and Sawdog for being my Quality Control Team for this video. Thank you to Youssef Nasr for transcribing the English subtitles of this video.
 combine
 circular motion

(and 4 more)
Tagged with:

Demonstrating Position, Velocity, and Acceleration of a MassSpring System
Flipping Physics posted a video in Oscillations
A “live” demonstration of of collecting position, velocity, and acceleration of a vertical massspring system. Want Lecture Notes? This is an AP Physics 1 topic. Content Times: 0:30 The basic setup 1:24 The equations 2:15 Position vs. Time 3:20 Velocity vs. Time 3:58 Acceleration vs. Time 5:20 Determining Period 7:09 Determining Spring Constant 8:14 Bestfit sine curve Next Video: Creating Circular Motion from Sine and Cosine Curves Multilingual? Please help translate Flipping Physics videos! Previous Video: Simple Harmonic Motion  Graphs of Mechanical Energies Please support me on Patreon! Thank you to Christopher Becke for being the sole member of my Quality Control Team for this video. Thank you to Youssef Nasr for transcribing the English subtitles of this video.
 angular frequency
 spring constant
 (and 10 more)

Simple Harmonic Motion  Graphs of Mechanical Energies
Flipping Physics posted a video in Oscillations
Kinetic energy and elastic potential energy as functions of time graphs for a horizontal massspring system in simple harmonic motion are demonstrated. Conservation of energy is shown. Want Lecture Notes? This is an AP Physics 1 topic. Content Times: 0:12 The positions 0:40 Kinetic energy 1:49 Elastic potential energy 2:44 Total mechanical energy 5:10 Including friction Next Video: Demonstrating Position, Velocity, and Acceleration of a MassSpring System Multilingual? Please help translate Flipping Physics videos! Previous Video: Simple Harmonic Motion  Graphs of Position, Velocity, and Acceleration Please support me on Patreon! Thank you to Scott Carter, Christopher Becke, and Sawdog for being my Quality Control Team for this video. Thank you to Youssef Nasr for transcribing the English subtitles of this video.
 mechanical energy
 graph
 (and 11 more)

Simple Harmonic Motion  Graphs of Position, Velocity, and Acceleration
Flipping Physics posted a video in Oscillations
Position, velocity, and acceleration as a function of time graphs for an object in simple harmonic motion are shown and demonstrated. Want Lecture Notes? This is an AP Physics 1 topic. Content Times: 0:01 Reviewing the equations 1:46 Position graph 2:50 Velocity graph 4:10 Acceleration graph 5:48 Velocity from position 7:19 Acceleration from velocity Next Video: Simple Harmonic Motion  Graphs of Mechanical Energies Multilingual? Please help translate Flipping Physics videos! Previous Video: Simple Harmonic Motion  Velocity and Acceleration Equation Derivations Please support me on Patreon! Thank you to Scott Carter, Christopher Becke, and Sawdog for being my Quality Control Team for this video. Thank you to Youssef Nasr for transcribing the English subtitles of this video.
 centripetal acceleration
 tangential velocity
 (and 10 more)

Simple Harmonic Motion  Velocity and Acceleration Equation Derivations
Flipping Physics posted a video in Oscillations
Deriving the velocity and acceleration equations for an object in simple harmonic motion. Uses calculus. Want Lecture Notes? This is an AP Physics 1 topic. Content Times: 0:01 Reviewing the position equation 2:08 Deriving the velocity equation 3:54 Deriving the acceleration equation Next Video: Simple Harmonic Motion  Graphs of Position, Velocity, and Acceleration Multilingual? Please help translate Flipping Physics videos! Previous Video: Simple Harmonic Motion  Position Equation Derivation Please support me on Patreon! Thank you to Scott Carter, Christopher Becke, and Sawdog for being my Quality Control Team for this video. Thank you to Youssef Nasr for transcribing the English subtitles of this video.
 simple harmonic motion
 circular motion
 (and 14 more)

I don't think anyone has ever gotten this far before. Kudos, WUV Our Work!!! 😎

Launch Report and Debrief Launch Time: 10:50 Team Members Present: Kyle Upson, Alex Wansha, Julia Vanill PlaybyPlay: launching straight up decoupled 1:10  stage 5 Kerbin periapsis 77 km antennas extended 2:22 decoupled 4:14  stage 4 2d, 05:07:39 escaped Kerbin's influence correction RCS burn 13d, 00:22:35 orbiting towards Duna 269d, 05:26:27 setting Duna periapsis  97,761m  269d, 05:28:01 orbiting Duna 300d descending onto Duna's surface 300d, 02:35:49 reached stage 1 300d, 02:46:20 landed 300d, 02:50:03 the rover has tires and we have full control over it! Photographs: Time of Flight: 300d, 02:53:43 Summary: The launch and flight to put a rover on Duna was another successful mission for WUV Our Work and Kerbalkind. We successfully flew to and landed on Duna with a rover and were able to control it. Opportunities / Learnings: We learned how to get a rover on Duna and fly far from the reaches of Kerbin. Strategies / Project Timeline: This was WUV Our Work's final mission. We are very glad that it ended with such a large goal completed, and we are proud of all of our great successes. Milesetones: Putting a rover on Duna  $2,000,000 Available Funds: $1,048,666  $77118 + $2,000,000 = $2,971,548!!!!

Fantastic Kerbal season!

Terrestrial exploration accomplished!

A fantastic Kerbal season!

WUV Our Work 2018 Missions
ThePeculiarParticle replied to ThePeculiarParticle's topic in Labs and Projects
Reder Rover : PreLaunch Team Name: WUV Our Work Available Funds: $1,048,666 Vehicle Name: “Reder Rover” Vehicle Parts List and Cost: RoveMax Model M1 (x4)  450 Cubic Octagonal Strut (x7)  16 EAS4 Strut Connector (x18)  42 RV105 RCS Thruster Block (x8)  DISCOUNT 310 Mk12R RadialMount Drogue Chute (x4)  150 Mk2R RadialMount Parachute (x4)  400 Communotron 8888  1500 SPW 3x2 Photovoltaic Panels (x2)  440 Z200 Rechargeable Battery Bank (x2)  360 OXSTAT Photovoltaic Panels (x2)  75 Probodobodyne HECS  650 FLR10 RCS Fuel Tank  200 TT38K Radial Decoupler  600 AEFF3 Airstream Protective Shell (3.75m)  1,104 FLR10 RCS Fuel Tank  200 Rockomax X20016 Fuel Tank  1,550 REL10 "Poodle" Liquid Fuel Engine  DISCOUNT 650 Rockomax X20032 Fuel Tank  3,000 Rockomax Jumbo64 Fuel Tank (x2)  5,750 REM3 "Mainsail" Liquid Engine  DISCOUNT 6,500 S1 SRBKD25k "Kickback" Solid Fuel Booster (x8)  2,700 TT70 Radial Decoupler (x4)  700 Structural Wing Type C (x4)  300 Delta Wing (x4)  600 Rockomax Brand Adapter (x2)  550 Advanced Nose Cone  Type B (x8)  320 TOTAL COST: 77,118 Design Goals: Our goal is to land a rover on Duna. To do this we need to be able to dramatically slow down in a considerably thinner atmosphere. Launch Goal: We are hoping to learn how to effectively land and maneuver a rover on Duna’s surface. Milestone: Land a Rover on Duna  $2,000,000 Pilot Plan: Launch and begin angling rocket at 20km Adjust rocket to achieve circular orbit Reach escape velocity out of Kerbin orbit Plan/execute an encounter with Duna Land softly in the thin atmosphere 
Name: BCD Ventures Launch Time: Friday June 8, 10:55 AM Team Members Present: Jeremiah Cottrill, Kara Davis, Riley Broderick PlaybyPlay: Full throttle off the runway and a straight flight to the ice cap. Fuel ran out quickly so a landing approximately near the UFO site was made and then Photographs: TimeofFlight: 0y, 0d, 00:35:38 Summary: All the goal we have set out to complete were met. Opportunities / Learnings: Getting your bearings on Kerbin was key to fuel use. Strategies / Project Timeline: We will now have much more plentiful funds and resources to work with, allowing us to greatly accelerate the development of BCD Ventures's space program. Milestone Awards Presented: Picture of UFO on northern ice cap of Kerbin  $50,000 (Half) Available Funds: 140430 + Rewards (50,000)  13,330 = 157100

Public Service Broadcasting "The Race For Space" Essay
HegelBot153 commented on ThePeculiarParticle's blog entry in Captain's Log
Lmao, I'm happy with this story.
Terms of Use
The pages of APlusPhysics.com, Physics in Action podcasts, and other online media at this site are made available as a service to physics students, instructors, and others. Their use is encouraged and is free of charge. Teachers who wish to use materials either in a classroom demonstration format or as part of an interactive activity/lesson are granted permission (and encouraged) to do so. Linking to information on this site is allowed and encouraged, but content from APlusPhysics may not be made available elsewhere on the Internet without the author's written permission.
Copyright Notice
APlusPhysics.com, Silly Beagle Productions and Physics In Action materials are copyright protected and the author restricts their use to online usage through a live internet connection. Any downloading of files to other storage devices (hard drives, web servers, school servers, CDs, etc.) with the exception of Physics In Action podcast episodes is prohibited. The use of images, text and animations in other projects (including nonprofit endeavors) is also prohibited. Requests for permission to use such material on other projects may be submitted in writing to info@aplusphysics.com. Licensing of the content of APlusPhysics.com for other uses may be considered in the future.