Jump to content

Leaderboard


Popular Content

Showing most liked content since 01/18/2018 in all areas

  1. 1 point
    You prefer Waffles over pancakes?
  2. 1 point
    Nice post HegelBot153. If you wear flannel pajamas and have flannel sheets, rolling over under the covers can be an 'enlightening' experience as well!
  3. 1 point
    When I was little, I used to yell at a mason jar... Physics said "Nay!"
  4. 1 point
    When visible light, X rays, gamma rays, or other forms of electromagnetic radiation are shined on certain kinds of matter, electrons are ejected. That phenomenon is known as the photoelectric effect. The photoelectric effect was discovered by German physicist Heinrich Hertz(1857–1894) in 1887. You can imagine the effect as follows: Suppose that a metal plate is attached by two wires to a galvanometer. (A galvanometer is an instrument for measuring the flow of electric current.) If light of the correct color is shined on the metal plate, the galvanometer may register a current. That reading indicates that electrons have been ejected from the metal plate. Those electrons then flow through the external wires and the galvanometer, providing the observed reading. The photoelectric effect is important in history because it caused scientists to think about light and other forms of electromagnetic radiation in a different way. The peculiar thing about the photoelectric effect is the relationship between the intensity of the light shined on a piece of metal and the amount of electric current produced. To scientists, it seemed reasonable that you could make a stronger current flow if you shined a brighter light on the metal. More (or brighter) light should produce more electric current—or so everyone thought. But that isn't the case. For example, shining a very weak red light and a very strong red light on a piece of metal produces the same results. What does make a difference, though, is the color of the light used. One way that scientists express the color of light is by specifying its frequency. The frequency of light and other forms of electromagnetic radiation is the number of times per second that light (or radiation) waves pass a given point. What scientists discovered was that light of some frequencies can produce an electric current, while light of other frequencies cannot. Einstein's explanation. This strange observation was explained in 1905 by German-born American physicist Albert Einstein (1879–1955). Einstein hypothesized that light travels in the form of tiny packets of energy, now called photons. The amount of energy in each photon is equal to the frequency of light (ν) multiplied by a constant known as Planck's constant (â„), or νâ„. Einstein further suggested that electrons can be ejected from a material if they absorb exactly one photon of light, not a half photon, or a third photon, or some other fractional amount. Green light might not be effective in causing the photoelectric effect with some metals, Einstein said, because a photon of green light might not have exactly the right energy to eject an electron. But a photon of red light might have just the right amount of energy. Einstein's explanation of the photoelectric effect was very important because it provided scientists with an alternative method of describing light. For centuries, researchers had thought of light as a form of energy that travels in waves. And that explanation works for many phenomena. But it does not work for phenomena such as the photoelectric effect and certain other properties of light. Today, scientists have two different but complementary ways of describing light. In some cases, they say, it behaves like a wave. But in other cases, it behaves like a stream of particles—a stream of photons. Read more: http://www.aplusphysics.com/courses/honors/modern/duality.html http://www.scienceclarified.com/Oi-Ph/Photoelectric-Effect.html#ixzz3MLV49L00 http://www.physlink.com/Education/AskExperts/ae24.cfm http://www.colorado.edu/physics/2000/quantumzone/photoelectric.html

Terms of Use

The pages of APlusPhysics.com, Physics in Action podcasts, and other online media at this site are made available as a service to physics students, instructors, and others. Their use is encouraged and is free of charge. Teachers who wish to use materials either in a classroom demonstration format or as part of an interactive activity/lesson are granted permission (and encouraged) to do so. Linking to information on this site is allowed and encouraged, but content from APlusPhysics may not be made available elsewhere on the Internet without the author's written permission.

Copyright Notice

APlusPhysics.com, Silly Beagle Productions and Physics In Action materials are copyright protected and the author restricts their use to online usage through a live internet connection. Any downloading of files to other storage devices (hard drives, web servers, school servers, CDs, etc.) with the exception of Physics In Action podcast episodes is prohibited. The use of images, text and animations in other projects (including non-profit endeavors) is also prohibited. Requests for permission to use such material on other projects may be submitted in writing to info@aplusphysics.com. Licensing of the content of APlusPhysics.com for other uses may be considered in the future.

×