
Content count
369 
Joined

Last visited

Days Won
1
Flipping Physics last won the day on January 5
Flipping Physics had the most liked content!
Community Reputation
1 NeutralAbout Flipping Physics

Rank
Physics Instructor
 Birthday 04/16/1973
Contact Methods

Website URL
http://www.flippingphysics.com
Profile Information

Gender
Male
Recent Profile Visitors

Video Discussion: What is the Maximum Speed of a Car at the Top of a Hill?
Flipping Physics posted a topic in Video Discussions
Name: What is the Maximum Speed of a Car at the Top of a Hill? Category: Rotational Motion Date Added: 20170918 Submitter: Flipping Physics What is the maximum linear speed a car can move over the top of a semicircular hill without its tires lifting off the ground? The radius of the hill is 1.8 meters. Want Lecture Notes? This is an AP Physics 1 topic. Content Times: 0:08 Translating the problem 0:42 Drawing the free body diagram and summing the forces 1:45 Why the force normal is zero in this situation 2:26 Finishing the problem Multilingual? Please help translate Flipping Physics videos! Previous Video: Introductory Centripetal Force Problem  Car over a Hill Please support me on Patreon! Thank you to Scott Carter and Christopher Becke for being my Quality Control Team for this video. What is the Maximum Speed of a Car at the Top of a Hill?
 maximum speed
 tires
 (and 9 more)

What is the Maximum Speed of a Car at the Top of a Hill?
Flipping Physics posted a video in Rotational Motion
What is the maximum linear speed a car can move over the top of a semicircular hill without its tires lifting off the ground? The radius of the hill is 1.8 meters. Want Lecture Notes? This is an AP Physics 1 topic. Content Times: 0:08 Translating the problem 0:42 Drawing the free body diagram and summing the forces 1:45 Why the force normal is zero in this situation 2:26 Finishing the problem Multilingual? Please help translate Flipping Physics videos! Previous Video: Introductory Centripetal Force Problem  Car over a Hill Please support me on Patreon! Thank you to Scott Carter and Christopher Becke for being my Quality Control Team for this video.
 problem
 newtons second law
 (and 9 more)

Video Discussion: Introductory Centripetal Force Problem  Car over a Hill
Flipping Physics posted a topic in Video Discussions
Name: Introductory Centripetal Force Problem  Car over a Hill Category: Rotational Motion Date Added: 20170910 Submitter: Flipping Physics A 453 g toy car moving at 1.05 m/s is going over a semicircular hill with a radius of 1.8 m. When the car is at the top of the hill, what is the magnitude of the force from the ground on the car? Want Lecture Notes? This is an AP Physics 1 topic. Content Times: 0:08 Translating the problem 1:49 Drawing the free body diagram 2:43 We need to sum the forces in the indirection 3:22 The “indirection” is positive. The “outdirection” is negative 4:06 Identifying the centripetal force in this problem 4:54 Solving the problem … finally. 6:15 Kit compares the magnitudes of the force normal and force of gravity Thank you to Kit from Gorilla Physics for your help with this video!! Multilingual? Please help translate Flipping Physics videos! Previous Video: Centripetal Force Introduction and Demonstration Please support me on Patreon! Thank you to Scott Carter and Christopher Becke for being my Quality Control Team for this video. Introductory Centripetal Force Problem  Car over a Hill
 problem
 newtons second law
 (and 8 more)

Introductory Centripetal Force Problem  Car over a Hill
Flipping Physics posted a video in Rotational Motion
A 453 g toy car moving at 1.05 m/s is going over a semicircular hill with a radius of 1.8 m. When the car is at the top of the hill, what is the magnitude of the force from the ground on the car? Want Lecture Notes? This is an AP Physics 1 topic. Content Times: 0:08 Translating the problem 1:49 Drawing the free body diagram 2:43 We need to sum the forces in the indirection 3:22 The “indirection” is positive. The “outdirection” is negative 4:06 Identifying the centripetal force in this problem 4:54 Solving the problem … finally. 6:15 Kit compares the magnitudes of the force normal and force of gravity Thank you to Kit from Gorilla Physics for your help with this video!! Next Video: What is the Maximum Speed of a Car at the Top of a Hill? Multilingual? Please help translate Flipping Physics videos! Previous Video: Centripetal Force Introduction and Demonstration Please support me on Patreon! Thank you to Scott Carter and Christopher Becke for being my Quality Control Team for this video.
 force normal
 problem
 (and 8 more)

Video Discussion: Centripetal Force Introduction and Demonstration
Flipping Physics posted a topic in Video Discussions
Name: Centripetal Force Introduction and Demonstration Category: Rotational Motion Date Added: 20170910 Submitter: Flipping Physics Learn why a centripetal force exists, three important things to remember about centripetal force, and drawing free body diagrams for objects moving in circles. Want Lecture Notes? This is an AP Physics 1 topic. Content Times: 0:01 Newton’s Second Law for Centripetal Force 1:10 Three things to remember about Centripetal Force 2:41 Drawing a free body diagram 3:57 Why we sum the forces in the “indirection” Next Video: Introductory Centripetal Force Problem  Car over a Hill Multilingual? Please help translate Flipping Physics videos! Previous Video: Introductory Centripetal Acceleration Problem  Cylindrical Space Station Please support me on Patreon! Thank you to Scott Carter and Christopher Becke for being my Quality Control Team for this video. Centripetal Force Introduction and Demonstration
 newtons second law
 free body diagram
 (and 3 more)

Centripetal Force Introduction and Demonstration
Flipping Physics posted a video in Rotational Motion
Learn why a centripetal force exists, three important things to remember about centripetal force, and drawing free body diagrams for objects moving in circles. Want Lecture Notes? This is an AP Physics 1 topic. Content Times: 0:01 Newton’s Second Law for Centripetal Force 1:10 Three things to remember about Centripetal Force 2:41 Drawing a free body diagram 3:57 Why we sum the forces in the “indirection” Next Video: Introductory Centripetal Force Problem  Car over a Hill Multilingual? Please help translate Flipping Physics videos! Previous Video: Introductory Centripetal Acceleration Problem  Cylindrical Space Station Please support me on Patreon! Thank you to Scott Carter and Christopher Becke for being my Quality Control Team for this video.
 newtons second law
 free body diagram
 (and 3 more)

Video Discussion: Introductory Centripetal Acceleration Problem  Cylindrical Space Station
Flipping Physics posted a topic in Video Discussions
Name: Introductory Centripetal Acceleration Problem  Cylindrical Space Station Category: Rotational Motion Date Added: 20170904 Submitter: Flipping Physics A cylindrical space station with a radius of 115 m is rotating at 0.292 rad/s. A ladder goes from the rim to the center. What is the magnitude of the centripetal acceleration at (1) the top of the ladder, (2) the middle of the ladder, and (3) the base of the ladder? Want Lecture Notes? This is an AP Physics 1 topic. Content Times: 0:12 Translating the problem 1:14 Solving the problem 2:54 Interpreting the results  Artificial Gravity 4:30 What do you feel on the ladder? Next Video: Centripetal Force Introduction and Demonstration Multilingual? Please help translate Flipping Physics videos! Previous Video: Centripetal Acceleration Introduction Please support me on Patreon! Thank you to Scott Carter, Aarti Sangwan and Christopher Becke for being my Quality Control Team for this video. Introductory Centripetal Acceleration Problem  Cylindrical Space Station
 space station
 artificial gravity
 (and 5 more)

Introductory Centripetal Acceleration Problem  Cylindrical Space Station
Flipping Physics posted a video in Rotational Motion
A cylindrical space station with a radius of 115 m is rotating at 0.292 rad/s. A ladder goes from the rim to the center. What is the magnitude of the centripetal acceleration at (1) the top of the ladder, (2) the middle of the ladder, and (3) the base of the ladder? Want Lecture Notes? This is an AP Physics 1 topic. Content Times: 0:12 Translating the problem 1:14 Solving the problem 2:54 Interpreting the results  Artificial Gravity 4:30 What do you feel on the ladder? Next Video: Centripetal Force Introduction and Demonstration Multilingual? Please help translate Flipping Physics videos! Previous Video: Centripetal Acceleration Introduction Please support me on Patreon! Thank you to Scott Carter, Aarti Sangwan and Christopher Becke for being my Quality Control Team for this video.
 space station
 artificial gravity
 (and 5 more)

Video Discussion: Centripetal Acceleration Introduction
Flipping Physics posted a topic in Video Discussions
Name: Centripetal Acceleration Introduction Category: Rotational Motion Date Added: 20170828 Submitter: Flipping Physics Why is there a “center seeking” centripetal acceleration? A stepbystep walk through of the answer to this question. Want Lecture Notes? This is an AP Physics 1 topic. Content Times: 0:09 Which mint has the largest angular velocity? 1:14 What do we know about the angular and tangential accelerations of the mints? 2:21 What do we know about the tangential velocity of mint #3? 3:39 Centripetal acceleration introduction 4:44 The centripetal acceleration equations 5:35 The units for centripetal acceleration Next Video: Introductory Centripetal Acceleration Problem  Cylindrical Space Station Multilingual? Please help translate Flipping Physics videos! Previous Video: Demonstrating the Directions of Tangential Velocity and Acceleration Please support me on Patreon! Thank you to Christopher Becke and Aarti Sangwan for being my Quality Control Team for this video. Centripetal Acceleration Introduction 
Why is there a “center seeking” centripetal acceleration? A stepbystep walk through of the answer to this question. Want Lecture Notes? This is an AP Physics 1 topic. Content Times: 0:09 Which mint has the largest angular velocity? 1:14 What do we know about the angular and tangential accelerations of the mints? 2:21 What do we know about the tangential velocity of mint #3? 3:39 Centripetal acceleration introduction 4:44 The centripetal acceleration equations 5:35 The units for centripetal acceleration Next Video: Introductory Centripetal Acceleration Problem  Cylindrical Space Station Multilingual? Please help translate Flipping Physics videos! Previous Video: Demonstrating the Directions of Tangential Velocity and Acceleration Please support me on Patreon! Thank you to Christopher Becke and Aarti Sangwan for being my Quality Control Team for this video.

Video Discussion: Demonstrating the Directions of Tangential Velocity and Acceleration
Flipping Physics posted a topic in Video Discussions
Name: Demonstrating the Directions of Tangential Velocity and Acceleration Category: Rotational Motion Date Added: 20170821 Submitter: Flipping Physics The best way to understand how tangential velocity and tangential acceleration are related is to visualize from above. Will you look at that! This video does exactly that. Want Lecture Notes? This is an AP Physics 1 topic. Content Times: 0:10 Visualizing up the three parts of the demonstration 0:51 Visualizing the tangential velocities 1:41 Visualizing the tangential accelerations 3:11 Visualizing tangential velocities and accelerations simultaneously 4:52 Angular vs. Tangential quantities Next Video: Centripetal Acceleration Introduction Multilingual? Please help translate Flipping Physics videos! Previous Video: Tangential Acceleration Introduction with Example Problem  Mints on a Turntable Please support me on Patreon! Thank you to Christopher Becke and Natasha Trousdale for being my Quality Control Team for this video. Demonstrating the Directions of Tangential Velocity and Acceleration
 direction
 demonstration
 (and 4 more)

Demonstrating the Directions of Tangential Velocity and Acceleration
Flipping Physics posted a video in Rotational Motion
The best way to understand how tangential velocity and tangential acceleration are related is to visualize from above. Will you look at that! This video does exactly that. Want Lecture Notes? This is an AP Physics 1 topic. Content Times: 0:10 Visualizing up the three parts of the demonstration 0:51 Visualizing the tangential velocities 1:41 Visualizing the tangential accelerations 3:11 Visualizing tangential velocities and accelerations simultaneously 4:52 Angular vs. Tangential quantities Next Video: Centripetal Acceleration Introduction Multilingual? Please help translate Flipping Physics videos! Previous Video: Tangential Acceleration Introduction with Example Problem  Mints on a Turntable Please support me on Patreon! Thank you to Christopher Becke and Natasha Trousdale for being my Quality Control Team for this video.
 direction
 demonstration
 (and 4 more)

Video Discussion: Tangential Acceleration Introduction with Example Problem  Mints on a Turntable
Flipping Physics posted a topic in Video Discussions
Name: Tangential Acceleration Introduction with Example Problem  Mints on a Turntable Category: Rotational Motion Date Added: 20170813 Submitter: Flipping Physics Tangential Acceleration is introduced and visualized. Example problem is worked through. We even relate arc length, tangential velocity, and tangential acceleration via the derivative! Example: A record player is plugged in and uniformly accelerates to 45 revolutions per minute in 0.85 seconds. Mints are located 3.0 cm, 8.0 cm, and 13.0 cm from the center of the record. What is the magnitude of the tangential acceleration of each mint? Want Lecture Notes? This is an AP Physics 1 topic. Content Times: 0:21 The tangential acceleration equation 0:55 Translating the example problem 2:13 Solving for angular acceleration 3:02 Solving for tangential accelerations 4:16 Visualizing the tangential accelerations 5:05 Using the derivative to relate arc length, tangential velocity, and tangential acceleration Multilingual? Please help translate Flipping Physics videos! Next Video: Demonstrating the Directions of Tangential Velocity and Acceleration Previous Video: Introductory Tangential Velocity Problem  Mints on a Turntable Please support me on Patreon! Thank you to Christopher Becke and Natasha Trousdale for being my Quality Control Team for this video. Tangential Acceleration Introduction with Example Problem  Mints on a Turntable
 record
 derivative
 (and 8 more)

Tangential Acceleration Introduction with Example Problem  Mints on a Turntable
Flipping Physics posted a video in Rotational Motion
Tangential Acceleration is introduced and visualized. Example problem is worked through. We even relate arc length, tangential velocity, and tangential acceleration via the derivative! Example: A record player is plugged in and uniformly accelerates to 45 revolutions per minute in 0.85 seconds. Mints are located 3.0 cm, 8.0 cm, and 13.0 cm from the center of the record. What is the magnitude of the tangential acceleration of each mint? Want Lecture Notes? This is an AP Physics 1 topic. Content Times: 0:21 The tangential acceleration equation 0:55 Translating the example problem 2:13 Solving for angular acceleration 3:02 Solving for tangential accelerations 4:16 Visualizing the tangential accelerations 5:05 Using the derivative to relate arc length, tangential velocity, and tangential acceleration Multilingual? Please help translate Flipping Physics videos! Next Video: Demonstrating the Directions of Tangential Velocity and Acceleration Previous Video: Introductory Tangential Velocity Problem  Mints on a Turntable Please support me on Patreon! Thank you to Christopher Becke and Natasha Trousdale for being my Quality Control Team for this video.
 record
 derivative
 (and 8 more)

Video Discussion: Introductory Tangential Velocity Problem  Mints on a Turntable
Flipping Physics posted a topic in Video Discussions
Name: Introductory Tangential Velocity Problem  Mints on a Turntable Category: Rotational Motion Date Added: 20170808 Submitter: Flipping Physics Three mints are sitting 3.0 cm, 8.0 cm, and 13.0 cm from the center of a record player that is spinning at 45 revolutions per minute. What are the tangential velocities of each mint? Want Lecture Notes? This is an AP Physics 1 topic. Content Times: 0:08 Translating the problem 1:11 Solving the problem 2:12 Visualizing the tangential velocities 2:42 The direction of tangential velocity Multilingual? Please help translate Flipping Physics videos! Next Video: Tangential Acceleration Introduction with Example Problem  Mints on a Turntable Previous Video: Human Tangential Velocity Demonstration Please support me on Patreon! Thank you to Christopher Becke and Natasha Trousdale for being my Quality Control Team for this video. Introductory Tangential Velocity Problem  Mints on a Turntable
Terms of Use
The pages of APlusPhysics.com, Physics in Action podcasts, and other online media at this site are made available as a service to physics students, instructors, and others. Their use is encouraged and is free of charge. Teachers who wish to use materials either in a classroom demonstration format or as part of an interactive activity/lesson are granted permission (and encouraged) to do so. Linking to information on this site is allowed and encouraged, but content from APlusPhysics may not be made available elsewhere on the Internet without the author's written permission.
Copyright Notice
APlusPhysics.com, Silly Beagle Productions and Physics In Action materials are copyright protected and the author restricts their use to online usage through a live internet connection. Any downloading of files to other storage devices (hard drives, web servers, school servers, CDs, etc.) with the exception of Physics In Action podcast episodes is prohibited. The use of images, text and animations in other projects (including nonprofit endeavors) is also prohibited. Requests for permission to use such material on other projects may be submitted in writing to info@aplusphysics.com. Licensing of the content of APlusPhysics.com for other uses may be considered in the future.