Jump to content

Flipping Physics

Educators
  • Posts

    470
  • Joined

  • Last visited

  • Days Won

    1

Everything posted by Flipping Physics

  1. Name: Linear Momentum and Impulse Review for AP Physics 1 Category: Exam Prep Date Added: 18 March 2015 - 10:30 AM Submitter: Flipping Physics Short Description: None Provided Review of the topics of Linear Momentum and Impulse covered in the AP Physics 1 curriculum. Content Times: 0:16 Linear Momentum 0:51 Conservation of Momentum 1:26 Types of Collisions 2:29 Newton’s Second Law in terms of Momentum 3:16 Impulse 4:11 Impulse during collisions Multilingual? View Video
  2. Name: Work, Energy and Power Review for AP Physics 1 Category: Exam Prep Date Added: 13 March 2015 - 08:25 AM Submitter: Flipping Physics Short Description: None Provided Review of the topics of Work, Energy, Power and Hooke’s Law covered in the AP Physics 1 curriculum. Content Times: 0:18 Work 1:38 Kinetic Energy 2:13 Elastic Potential Energy 3:02 Gravitational Potential Energy 4:02 Work and Energy are in Joules 4:58 Conservation of Mechanical Energy 5:54 Work due to Friction equals the Change in Mechanical Energy 6:46 Power 7:46 Hooke’s Law Multilingual? View Video
  3. Name: Dynamics Review for AP Physics 1 Category: Exam Prep Date Added: 09 March 2015 - 09:36 AM Submitter: Flipping Physics Short Description: None Provided Review of all of the Dynamics topics covered in the AP Physics 1 curriculum. Content Times: 0:18 Inertial Mass vs. Gravitational Mass 1:14 Newton’s First Law of Motion 2:20 Newton’s Second Law of Motion 3:17 Free Body Diagrams 4:29 Force of Gravity or Weight 4:41 Force Normal 5:32 Force of Friction 7:32 Newton’s Third Law of Motion 8:20 Inclines 9:41 Translational Equilibrium Multilingual? View Video
  4. Name: Kinematics Review for AP Physics 1 Category: Exam Prep Date Added: 02 March 2015 - 03:23 PM Submitter: Flipping Physics Short Description: None Provided Review of all of the Kinematics topics covered in the AP Physics 1 curriculum. Plus some bonus introductory stuff. Content Times: 0:26 Vector vs. Scalar 1:22 Component Vectors 2:04 Distance vs. Displacement 2:41 Speed vs. Velocity 3:04 Acceleration 3:26 Motion Graphs 4:29 Free Fall Graphs 6:31 Uniformly Accelerated Motion (UAM) 7:52 How to UAM 8:18 Projectile Motion 9:28 Relative Motion 10:00 Center of Mass Multilingual? View Video
  5. Name: Understanding the Tension Force Category: Dynamics Date Added: 16 February 2015 - 09:10 AM Submitter: Flipping Physics Short Description: None Provided Rope demonstrations to understand the Tension Force. Content Times: 0:11 Basic information about the Tension Force 0:43 Demonstrating the Tension Force 1:31 Showing the direction of the Tension Force 2:15 Adding another Tension Force to the Demonstration 2:50 A slack rope has zero Tension Force 3:10 Setting up the demonstrations Multilingual? View Video
  6. Name: A Common Misconception about Newton's Third Law Force Pairs (or Action-Reaction Pairs) Category: Dynamics Date Added: 09 February 2015 - 02:24 PM Submitter: Flipping Physics Short Description: None Provided Proof that the Force Normal and the Force of Gravity are not a Newton’s Third Law Force Pair. Content Times: 0:26 Drawing the Free Body Diagram 1:02 Not a Newton’s Third Law Force Pair 1:37 The Force Normal Force Pair 1:55 The Force of Gravity Force Pair Multilingual? View Video
  7. Name: Introduction to Newton’s Third Law of Motion Category: Dynamics Date Added: 19 January 2015 - 10:48 AM Submitter: Flipping Physics Short Description: None Provided Learn about Newton’s Third Law of Motion. Several examples of Newton’s Third Law Force Pairs are demonstrated and discussed. We even travel to Dandong, China. Content Times: 0:10 Newton’s Third Law 0:47 Ball and Head Force Pair 1:49 At the Ann Arbor Hands-On Museum 2:35 Why I don’t like the Action/Reaction definition 3:30 Hammer and Nail Force Pair 4:20 Mr.p and Wall Force Pair 4:36 Kevin Zhang and The Great Wall Force Pair 5:23 The Great Wall Location Shots 5:36 Filming the intro Multilingual? View Video
  8. Name: Experimentally Graphing Uniformly Accelerated Motion Category: Kinematics Date Added: 16 January 2015 - 09:38 AM Submitter: Flipping Physics Short Description: None Provided We experimentally determine the position, velocity and acceleration as a function of time for a street hockey puck that is sliding and slowing down. Is it uniformly accelerated motion? Content Times: 0:16 Experimental graph of position as a function of time 0:43 Deciding what the graph of velocity as a function of time ideally should be 1:35 Experimental graph of velocity as a function of time 2:11 Deciding what the graph of acceleration as a function of time ideally should be 2:57 Experimental graph of acceleration as a function of time Multilingual? View Video
  9. Name: Using Newton's Second Law to find the Force of Friction Category: Dynamics Date Added: 12 January 2015 - 11:59 AM Submitter: Flipping Physics Short Description: None Provided In order to use Newton’s Second Law, you need to correctly draw the Free Body Diagram. This problem explains a common mistake students make involving the force applied. We also review how to find acceleration on a velocity as a function of time graph. Content Times: 0:22 The problem 0:54 Listing our known values 1:51 Drawing the Free Body Diagram 2:17 A common mistake in our Free Body Diagram 3:32 Solving the problem 4:14 Another common mistake 5:07 Why is the acceleration positive? Multilingual? View Video
  10. Name: Summing the Forces is Vector Addition Category: Dynamics Date Added: 06 January 2015 - 01:59 PM Submitter: Flipping Physics Short Description: None Provided Summing the forces is nothing new, it is vector addition. This video compares summing the forces to graphical vector addition. This video builds off the previous video "View Video
  11. Name: A Three Force Example of Newton's 2nd Law with Components Category: Dynamics Date Added: 16 December 2014 - 02:17 PM Submitter: Flipping Physics Short Description: None Provided Finding the net force caused by three brothers fighting over a stuffed turtle. We break one vector in to components and find the components of the net force in order to solve for the net force. Content Times: 0:16 My 3 brothers 0:29 The problem 1:13 The givens 1:55 Drawing the Free Body Diagram 2:39 Breaking the Force of Chris in to its components 4:09 Redrawing the Free Body Diagram 4:54 Finding the components of the net force 5:47 Finding the net force 7:10 Finding the direction of the net force 8:02 Shouldn’t Turtle accelerate? 8:39 Directing my brothers Multilingual? View Video
  12. Name: Understanding Uniformly Accelerated Motion Category: Kinematics Date Added: 09 December 2014 - 02:05 PM Submitter: Flipping Physics Short Description: None Provided Students sometimes have a difficult time understanding what acceleration in meters per second squared really means. Therefore, I present acceleration as meters per second every second instead. This helps students gain a better conceptual understanding of acceleration. Content Times: 0:12 Acceleration is meters per second every second 1:22 The first demonstration 1:56 Finding the velocity at each second 3:18 Finding the position at each second 4:31 The second demonstration Multilingual? View Video
  13. Name: Force vs. Time on a Dynamics Cart Category: Dynamics Date Added: 03 December 2014 - 10:59 AM Submitter: Flipping Physics Short Description: None Provided When the forces in a free body diagram don’t change students often think that Newton’s Second Law will yield the same results. This demonstration shows that is not true. This is a step-by-step analysis of tension force as a function of time for a dynamics cart in motion on a horizontal track. Content Times: 0:13 Reviewing known information 0:47 The three parts in this demonstration 1:22 Drawing the two free body diagrams 2:27 Understanding the free body diagrams 3:12 Identifying the String Direction 4:08 Finding the Tension Force during Part #1 6:06 Theoretical vs. Experimental Tension Force during Part #1 6:28 Finding the Tension Force during Part #2 7:52 Theoretical vs. Experimental Tension Force during Part #2 8:13 Finding the Maximum Acceleration during Part #3 9:37 Instantaneous vs. Average 10:21 All the graphs sequentially Multilingual? View Video
  14. Name: Introductory Newton's 2nd Law Example Problem and Demonstration Category: Dynamics Date Added: 25 November 2014 - 02:12 PM Submitter: Flipping Physics Short Description: None Provided This video could also be called "Finding the Force of Friction between a Dynamics Cart and Track†because we use Newton’s Second Law to analyze a demonstration and show how negligible the force of friction really is. Content Times: 0:16 Reading the problem 0:37 Demonstrating the problem 2:30 Translating the problem 3:47 Drawing the free body diagram 4:36 Summing the forces in the x direction 5:32 Solving for acceleration 7:04 Solving for the force applied 7:29 Is the force of friction negligible? Multilingual? View Video
  15. Name: Introduction to Newton’s Second Law of Motion with Example Problem Category: Dynamics Date Added: 21 November 2014 - 02:38 PM Submitter: Flipping Physics Short Description: None Provided The application of Newton’s Second Law is when you really understand what the net force equals mass times acceleration where both force and acceleration are vectors really means. Therefore, we introduce Newton’s Second Law and then do an example problem. Content Times: 0:11 Defining Newton’s Second Law 1:00 The example problem 1:51 Drawing the Free Body Diagram 2:48 The Force of Gravity 3:42 The net force in the y-direction 5:28 The acceleration of the book in the y-direction 6:38 The net force in the x-direction 7:59 Solving for the dimensions of acceleration 8:54 Constant net force means constant acceleration Multilingual? View Video
  16. Name: The Reality of our First Free Body Diagram Category: Dynamics Date Added: 19 November 2014 - 02:55 PM Submitter: Flipping Physics Short Description: None Provided The free body diagram we first learn is not entirely accurate. All of the forces are not drawn from the center of mass of the object. Learn why we start this way and, when we get torque, what the free body diagrams will actually look like. Content Times: 0:12 Reviewing the first free body diagram 0:39 A more correct free body diagram 1:22 Comparing this approach to the projectile motion approach 1:52 When we get to torque 2:42 The green screen Multilingual? View Video
  17. Name: Introduction to Free Body Diagrams or Force Diagrams Category: Dynamics Date Added: 13 November 2014 - 09:53 AM Submitter: Flipping Physics Short Description: None Provided We define and discuss how to draw Free Body Diagrams which are also called Force Diagrams. In addition we define the force normal and the force applied. Force of friction and center of mass are briefly discussed, however, a much more detailed discussion of each is left for later lessons. Free Body Diagrams are drawn on a level surface and on an incline. Content Times: 0:12 Defining Free Body Diagram or Force Diagram 0:46 Center of mass 1:13 The force of gravity 2:08 The force normal 3:28 Adding a force applied 4:02 The force of friction 4:53 Adding an incline 5:54 The force of friction caused by the incline Multilingual? View Video
  18. Name: Weight and Mass are Not the Same Category: Dynamics Date Added: 10 November 2014 - 10:20 AM Submitter: Flipping Physics Short Description: None Provided Three major differences between weight and mass are discussed and three media examples of weight in kilograms are presented (and you should know that weight is NOT in kilograms). Content Times: 0:18 Base SI dimensions for weight and mass 1:25 NASA: weight in kilograms 1:38 Michio Kaku: weight in kilograms 1:52 Derek Muller of Veritasium: weight in kilograms 2:30 Weight is a vector and mass is a scalar 2:53 Weight is extrinsic and mass is intrinsic 3:52 Comparing weight and mass on the Earth and the moon 4:45 Space elevators Multilingual? View Video
  19. Name: Introduction to the Force of Gravity and Gravitational Mass Category: Dynamics Date Added: 05 November 2014 - 09:47 AM Submitter: Flipping Physics Short Description: None Provided Defining the Force of Gravity or Weight and Gravitational Mass. We also determine the dimensions for force in both Metric and English units. Content Times: 0:11 Defining the Force of Gravity or Weight 1:09 Defining Gravitational Mass 2:12 The direction of the Force of Gravity 2:47 Determining the dimensions for force 4:09 The English unit for force 4:54 Slug vs. Blob Multilingual? View Video
  20. Name: Introduction to Force Category: Dynamics Date Added: 2016-10-27 Submitter: Flipping Physics Defining Force. Including its dimensions, demonstrations of force and mass affecting acceleration, showing that a force is an interaction between two objects and contact vs. field forces. Content Times: 0:11 Defining force 0:56 Demonstrating how force and mass affect acceleration 2:15 Demonstrating why a force doesn’t necessarily cause acceleration 4:09 Force is a vector 4:23 A force is an interaction between to objects 4:56 Contact vs field forces 5:38 The force of gravity is a field force 6:19 Face and snow force interaction Want Lecture Notes? Multilingual? Please help translate Flipping Physics videos! Next Video: Introduction to the Force of Gravity and Gravitational Mass Previous Video: Introduction to Inertia and Inertial Mass 1¢/minute Introduction to Force
  21. Name: Introduction to Inertia and Inertial Mass Category: Dynamics Date Added: 27 October 2014 - 10:02 AM Submitter: Flipping Physics Short Description: None Provided Before you can start learning about Forces and Newton’s Laws of Motion, you need to understand inertia and mass. This video defines both and more specifically inertial mass. Content Times: 0:13 Defining inertia 1:04 Demonstrating inertia 1:26 Defining inertial mass 2:17 Marcia demonstrates the concept of inertial mass 3:06 Inertial mass not Gravitational mass 4:00 How I filmed a steel sphere moving at a constant velocity Multilingual? View Video
  22. Name: Do Your Feet Affect How Far You Slide on a Water Slide? Category: Dynamics Date Added: 22 October 2014 - 01:39 PM Submitter: Flipping Physics Short Description: None Provided If you hold your feet flat or point them, does it change how far you slide. This video shows the answer and explains why using the concept of drag force. Content Times: 0:26 Showing the two foot positions 0:57 Defining aerodynamic 1:41 Defining the Drag Force 2:32 A closer look at the cross sectional area 4:04 Showing the answer 5:05 Comparing splashes 5:43 A second demonstration 6:22 Many thanks Multilingual? View Video
  23. Name: Skateboarding Frame of Reference Demonstration Category: Kinematics Date Added: 15 October 2014 - 02:52 PM Submitter: Flipping Physics Short Description: None Provided All motion is relative to a frame of reference. A simple demonstration showing this to be true. Content Times: 0:21 The demonstration 1:22 A second, similar demonstration Multilingual? View Video
  24. Name: Relative Motion Problem: Solving for the angle of the moving object Category: Kinematics Date Added: 07 October 2014 - 03:02 PM Submitter: Flipping Physics Short Description: None Provided It is not obvious in all relative motion problems how to draw the vector diagrams. Sometimes the velocity of the object with respect to the Earth is not the hypotenuse of the velocity vector addition triangle. Here we address how to handle a problem like that. Content Times: 0:15 Reading the problem 0:40 Translating the problem 1:52 Visualizing the problem 2:17 Drawing the vector diagram 3:33 Rearranging the vector equation 4:40 Redrawing the vector diagram 5:30 The Earth subscript drops out of the equation 5:51 Solving part (a): solving for theta 6:40 Solving part (b ): solving for the speed of the car relative to the Earth 7:48 Understanding the answer to part (b ) Want View Video
  25. Name: An Introductory Relative Motion Problem with Vector Components Category: Kinematics Date Added: 02 October 2014 - 09:52 AM Submitter: Flipping Physics Short Description: None Provided This relative motion problem addresses how to deal with vectors that do not form right triangles. Content Times: 0:15 Reading the problem 0:32 Translating the problem 1:29 Visualizing the problem 2:30 Drawing the vector diagram 2:57 Haven’t we already done this problem? 3:31 How NOT to solve the problem 4:06 How to solve the problem using component vectors 4:40 Finding component vectors 5:58 Redrawing the vector diagram 6:20 Finding the magnitude of the resultant vector 8:02 Finding the direction of the resultant vector 9:15 Showing the resultant vector angle Want View Video
×
×
  • Create New...