Jump to content

NathanKenney

Members
  • Content count

    37
  • Joined

  • Last visited

Community Reputation

0 Neutral

About NathanKenney

  • Rank
    Advanced Member
  1. Welding, as most people know, is when you use a torch to melt a material to another material, as well as add some filler material for strength. However, there are a lot of different welds that can be made, and a lot of different ways you can make them. For example, some common types of energy sources for welding include a gas flame, lasers, electric arcs, electron beams, ultrasound, and friction. For the purpose of this post, I'll be talking about laser welding, since it is newer, and involves lasers which are just inherently cool. Welding using a laser beam consists of a concentrated laser beam, which provides a lot of energy making a weld fast, deep, and within a small area. Because of the extreme heat of the laser, however, some materials can be prone to cracking. It is also important to focus the laser properly, as the weld is the most effective when the focal point is just below the surface of the material being welded. Laser welding also has some advantages over electron beam welding, primarily that it can be done in air and is not required to be done in a vacuum, and does not produce x-rays. Welding is just one of those things you dont think about that much, and don't realize how important it is to so many every day things, and it is really cool that innovations are still being made in welding to adapt new technologies, such as lasers, into a hundred year old proscess.
  2. I have heard of quantum entanglement before, but really with no concept of what it actually was or how it worked. Turns out, surprise surprise, that it is incredibly complicated but also really amazing. In short, quantum entanglement consists of 2 particles becoming identical, or having the same spin and charge. After they have become entangled, they remain that way. This means that if one is spun the other way, the other will instantaneously react inversely to the particle it is paired with. As if this in itself isn't complicated enough, it also poses the question of how that information is able to travel faster than the speed of light since nothing is supposed to travel faster than the speed of light. The entanglement of particles can be broken by contact with the environment around it, such as making a measurement. Einstein himself beloved that quantum entanglement was a violation of quantum mechanics as it stands, and that part of the theory must be missing. He believed this because according to quantum mechanics, there should be a 50% chance that a particle will be spinning any particular way on any particular axis when measured, however when entangled particles are measured on the same axis, there is always a negative coralation, since both particles always seem to know what the other is going to do, which also causes an issue of cause and effect, since it is impossible to know which of the particles in the system caused the other to spin the other direction. Experiments done with entangled particles have been done where measurements have been taken within a hundredth of the time it would take light to travel between the tow particles, proving that this information does in fact travel faster than the speed of light, especially since quantum entanglement violates Bell's inequality, which in its absolute most basic form essentially states that no measurements, wether they are made of not, can ever reproduce every prediction of quantum mechanics. However, naturally this becomes even more complicated as researches claimed that in exprements conducted in 2012-2013 two photons were able to be entangled without ever consisting at the same time. This discovery leads to the conclusion that information is not only able to travel through space, but also through time, and at a speed faster than the speed of light. The possibilities of what we could do with this knowledge if we are ever able to use this information in a productive way is endless, and is really exciting for the future of science and technology as a whole. And, in my opinion, the most astonishing part of this whole theory is that is was discovered over 80 years ago, and we still don't fully understand it. Physics truely never ceases to amaze me, and I can't wait to learn about more insane stuff like this in the future.
  3. Recently, wireless charging had been catching on in a lot of consumer technology especially smart phones. While almost useless at this point in time, it will hopefully get better over time, but here's the basics of how it works. There is a charging base, that must be connected to some conventional power supply, such as a wall outlet, and in the base, there is an induction coil which generates a changing magnetic field. A phone with wireless charging capabilities also has another induction coil, which takes power from the magnetic field created in the base coil, and transfers the form of current to the phones battery, charging it. Surprisingly, that's about all there is to the actual functionality of wireless charging, however, there have been wireless chargers created that work from meters apart, and while they function slightly differently, show that wireless charging could be actually useful in the future. But until then, most of us are stuck using boring old charging cables and Wall outlets.
  4. Generally, when your car needs new tires you look for something with good tread so you have good traction with the road (unless you're broke and your only requirement for tires is the cheapest thing they sell at Walmart). But drag slicks are just totally smooth, so why do they hold traction so well? Well the answer is really simple actually, it mostly comes down to surface area. Since slicks are perfectly flat, the contact patch the tire has with the road is much larger, providing better traction. Also, since there is no tread on the tire, there can be no uneven tread wear, so they can be made of a softer tire compound that has a larger coefficient of friction with the road, providing much better traction than standard tire material. So, if these tires provide such great traction, why don't all cars use them? Well, the answer, again, comes down to surface area. Since essentially the entire tire contacts the road, it is very impractical in snowy and wet conditions, as more snow or rain gets under the tires, it has less and less contact with the road, and will begin to either slide or just spin. Meanwhile, conventional treaded tires can push the snow or rain into the grooves, and maintain contact with the road, keeping traction with the road.
  5. The combustion engine, while old, is still an impressive technological feat, as seen in its ability to remain the best way to power most vehilcles to this day. Internal combustion engines All work in the same general way, where some fuel is burned in a chamber, and the resulting energy from the explosions is used to move pistons, which in turn move a crank that can then be transferred into whatever energy is necessary to power whatever the engine is moving. The mechanical energy transferred to the crankshaft is much more useful in the terms of moving things than the chemical energy of the combustion itself is. The most common fuels for combustion engines are gasoline and diesel, as they provide a lot of energy when burned, and because of this are able to move an engine faster and with more power than other fuel types. Depending on the number of cylinders an engine has can determine whether of not the engine is balanced. What does this mean? Well, and engine with an odd number of cylinders, such as a 3 cylinder engine is inherently going to be unblanced, as there will always be one more piston in one position than the other. Because of this, most engines are designed with an even number of cylinders such as the inline 4, inline 6, flat 6, V6, V8, etc. engines. This allows an even number of pistons to fire in the same direction every time, balancing the engine and allowing for a more practical use, especially when the engine is in a car and you don't want a shaky ride, an engine with an even number of cylinders will combat the inherent imbalance of an engine with an odd number of cylinders. This awesome video shows the internal workings of an actual engine in slow mostion, so you can see what actually goes on inside of an engine.
  6. A lot of things glow in the dark, from toys to stickers to shoes. Just about anything you can imagine, someone's made it glow in the dark. There are several different categories of things that glow in the dark, but i'll be focusing on what makes most consumer products glow in the dark, since it's more relevant to every day life. While researching for this blog post, the second sentence of the Wikipedia page mentioned quantum mechanics, so this could be even more interesting than I initially thought it would. Anyways, the technical name for "glow in the dark" is phosphorescence and this type of glow in the dark, as mentioned previously, can be found in toys, paint, and stickers, and according to Wikipedia, the study of phosphorescent materials led to radioactivity being discovered in the late 1890's. So, since phosphorescence is a special case of photoluminescence, which is when a photon is absorbed and then quickly released, photons are still absorbed but instead of being released very quickly like on the case of photoluminescence, they rare released slowly over the course of minutes or even hours. This is because when the photons are absorbed they experience strange intersystem crossing, sending them usually into a triplet state, which basically means that an excited electron is not paired with a ground state electron, and has the same spin as a ground state electron. These crossings to a triplet state are not very common since they require and a forbidden spin transition, which is a transition that is possible, however they are electric dipole forbidden and occur at a much lower rate. Still following along? Good, because there's more where that came from. Since the energy from the absorbed light is stuck with an electron that has crossed to a triplet state, the same "forbidden spin" transaction must occor for the electron to return to its original energy state. As such, these significantly less common transactions occur much more slowly, and are therefore able to store light for a long period of time. Once all of the electrons have been restored to their initial energy state, there is no longer any "glow". This turned out to be a shockingly interesting topic to research and write about, especially considering it could behave been explained in about 1 sentence consisting of "you charge it with light then wait for the energy to be released and it doesn't glow anymore." But hey, where's the fun in that?
  7. How do you make a car go faster? Slap a turbo in it, duh. While that certainly isn't as easy as it sounds, how do turbos even work anyways? Well, for starters, turbos really are all about recycling. No really, unlike an old fashioned supercharger that relied on a belt driven system to receive power, a turbocharger is powered by a car's exhaust. The energy from the gas exiting the car's exhaust is used to run a turbine that compresses air coming into the engine. Since conventional combustion engines are powered by, well, combustion, and since one of the key ingredients to fire is oxygen, the turbocharger helps to deliver a greater mass of oxygen to the engine versus atmospheric pressure. To combat this higher amount of air flowing into the engine, the car relies on its ecu, which is essentially a magic box that monitors a bunch of sensors for stuff you didn't even know your car has and makes sure everything runs the way it should and that nothing blows up. So, the Ecu realizes woah there's a lot more oxygen getting to the engine now, better pump in some more gas so it can keep up. The result of more air and gas in a chamber per explosion results in larger explosions allowing the engine to produce more power and make your car faster. Or more efficient since a turbo charger can also allow a smaller engine to produce the same power as a larger one, saving on size, weight, and emissions.
  8. Recently, just about every phone to come out and even some newer laptops include a finger print sensor. But how does this technology work? Well, in an iPhone and most other mobile phones, the fingerprint sensor used is called a capacitive touch button, which works very similarly to the actual screen of the phone, which fundamentally acts as a capacitor with the button being a conducting plate, the epidermal layer of your finger acting as a dielectric, and the dermal layer acting as the second conducting plate, creating a capacitance and therefore letting the button know where your finger is. The way it is able to read your fingerprint, is that rather than the whole button acting a a single capacitor, each indevidual sensor in the entire array that makes up the button acts as a capacitor, and based on the information this array gathered when you place your finger on it, it is able to save that image and match it up later when you need to use the sensor.All things considered, this technology has been super convinient on cell phones for years now, and it is really cool to see these more high-tech inventions making their way into consumer products, and can't wait to see what the next big feature is going to be.
  9. A YouTube series that i've been watching recently called roadkill, came up with possibly the best worst idea ever. Previously on the show, they tried to turbocharge a chevy manza using 5 leaf blowers all fed into a single tube that leads directly to the air intake on the engine, and believe it or not, it actually added some horsepower to the car, however had negligible real world use impact. Recently, however, they brought this same car back, but decided to replace the leaf blower turbo with something much better. Their new idea, dubbed the boost caboose, was a Chevy small block V8 engine on an engine test stand mounted to a trailer to be towed by the car, and was attached to a hose that feed air into the actual engine in the car through the same tube the leaf blowers previously fed air into. This insane contraption actually worked pretty well with the engine running at 5000rpm and an incredibly sketchy fuel system that pumped the proper amount of gas to the engine per every additional pound of boost provided to the engine by the "boost caboose". Unlike the leafblower turbo they previously had in this car, their new boost system actually provided a noticeable speed boost while driving. While totally and completely impractical in every way, this is a really cool concept that is impressive just in the fact that it worked. If you want the see the entirety of this monstrosity being built, you can watch the whole YouTube video here:
  10. Before deciding to make this post, I really had no idea how a touchscreen worked. However, after doing some research it's actually pretty interesting. Most modern touch screens, such as what is most likely on your phone is known as a capacitive touchscreen, and that's because it essentially works by acting as a capacitor. A capacitive touch screen is made up of a few essential parts, the LCD or OLED screen itself, a glass or plastic cover used as an insulator that is covered in a clear conductive coating, and sensors to measure change in emf and determine where you are touching. The following diagram gives a basic idea of what a capacitive touchscreen is made up of: Now into how one of these things actually works. Since the glass or plastic component of the assemble is coated in a conducting layer, when it receives a charge it in essence becomes a capacitor, 2 conducting layers separated by an insulator. Since people are also conductive, when you touch part of the display, your finger adds surface area to the existing conducting surface, which ultimately results in a drop in emf measured by sensors attached at the edges of the screen which tell the device you were using where exactly on the screen the input was, and what to do as a result of that. This is something I have been wondering about for a while, but just never really when out of my way to look into, and now that I have, it seems blatantly obvious since capacitive is literally in the name, but it was interesting to learn about regardless.
  11. In the spirit of the new resident evil game coming out very soon, it should be interesting to find out how many characters should have died in the previous game in a helicopter crash. Throughout Resident evil 6, the are a few helicopter crashes, and in the usual horror game scare tactic, everyone but the main characters die in these crashes. But should your characters have lived? There is an average of 1.44 fatalities per hundred thousand hours flown in a helicopter, and you can probably make a safe guess that if your helicopter crashes, you're at much higher risk for dying. Although there are countless factors that play into how a helicopter crash will turn out, lets just break it down to its simplest form, how high up would a helicopter fall from, and how much does a helicopter weigh? An average cruising height for a helicopter is around 2000ft or 609.6 meters, and an average helicopter weighs about 10000 pounds or 4535.924 kilograms. So, with those estimates, a helicopter would hit the ground with roughly a force of 2765099.27 newtons, and while it is definitely difficult to say how much force it takes to kill a person, it is most likely safe to say that this much force spread out across your entire body as well as the environment around you is lily enough to kill you. So based on this, things aren't looking too good for our heroes Leon and Helana, especially considering even if they do somehow miraculously survive the initial impact, they would still have to immediately begin fighting zombies, and with those odds, chances of survival are looking pretty poor. So, is it possible to survive a helicopter crash? Yes. Is it likely? no. Falling to the ground in a 10,000 pound box of death is generally not very good for your health and should be avoided at all costs if possible.
  12. Guitar pickups are really interesting technology. most people have seen or played an electric guitar, and the way that the guitar is able to transmit sound to the amplifier is through the pickups. in essence, a guitar pickup is a set of magnets wrapped in wire. while there are different types of pickups such as humbuckers, single coils, and p90's among others, they all operate in generally the same way. It all starts by playing a string on the guitar, and from there, the physics really gets interesting. the permanent magnets in the pickup create a magnetic field, and the vibration of the string creates a flux through the magnetic field, which then creates a voltage in the wire which is then transmitted to the amplifier via a quarter inch cable so you are actually able to hear it at a reasonable volume. Other types of pickups such as humbuckers, offer specific benefits not enjoyed by single coil pickups, Humbuckers feature 2 coils that are wound opposite eachother as well as having every other magnet have the polarity flipped so that when interference noises are picked up by the pickups, the noise is distributed evenly throughout all directions, and the interference noises are then cancelled out by the opposite wound coils since they have an equal amount of interference distributed throughout them in opposite directions. Guitar pickups are really a very influential invention, allowing new cool sounds to be made with a guitar, creating the basis for entire genres of music.
  13. In the interest of simplicity, we're going to talk about how a co2 powered blow-back style paintball gun works, because an electric paintball gun has so many complex parts, each one could have it's own explanation. so, Simply put, a co2 tank is screwed into the back of the gun, the gas flows through the gun, and is used to move the bolt back and forth, creating enough pressure behind the ball so send it flying out of the barrel. So, since this style of paintball gun is mainly gas through (no air regulation between the tank and the rammer), the main part that must be explained is the poppit valve. When pressure from the gas is released into the lower chamber when the trigger is pressed, the rammer is compressed back against the spring, moving the bolt backwards and allowing a paintball to enter the upper chamber the bolt then slams forward into the ball, followed by a puff of gas which propels the ball out of the barrel at about 300ft/s.the force from the gas being released again pushed the rammer back, compressing a spring, which will then repeat the whole process over again as the trigger is pulled again. This is where the type of paintball gun gets its name of "blowback style" as the gas released with each trigger pull "blows back" the rammer into place, resetting it and preparing it for another shot without the user manually having to move anything between shots.
  14. As legendary guitar player Tom Morello once said, a whammy pedal is essential for making those awesome pterodactyl sounds. but what even is a guitar effects pedal? simply, it changes the sound a guitar makes somewhere between playing the strings and the sound coming out of the amp. For now, we'll just focus on distortion pedals which are probably the most common pedals. Distortion pedals will distort the "clean sound" a guitar makes before the effect of the pedal is added in. When a guitar is played, sound is picked up by the pickups and sent through the quarter inch jack in the form of an electronic signal that corresponds to a sound wave. When this wave reaches the distortion pedal, depending on the circuit within the given distortion pedal, it will change the shape of the sound wave generally change the shape of the peaks and troughs of the wave, and then send the through to the amplifier, resulting in a distorted sound as the final product. Distortion pedals will generally have a knob that lets the user control how intense the effect is, or how much you will distort the wave.
  15. So recently, record players have been making a resurgence. While there's no denying that they're pretty cool, and sound way better than a cd or mp3 (if you even care about that) they work in a pretty cool way. Record players as we know them now, work by spinning a record on a turntable, that is usually belt driven to spin a record at a given speed, most commonly either 33.5 rpm or 45 rpm. record players have a needle that runs through the grooves of the record that picks up vibrations which are sent through the needle, into wires in the are that are then sent through a coil in a magnetic field which then converts it into an electrical signal that is sent through an amplifier, and finally the speakers, producing the sound that you hear. there are a lot of factors, however, that can contribute to how a record plays. for example, if there is a scratch in the record it could skip through the song. also if the grooves in the record aren't deep enough, the record could skip over the grooves without a scratch even being present just from the oscillation of the needle. Some of these issues can be fixed with features on the record player, such as anti-skate, and anti-skip features, which changes the tension of the arm on the record which will generally help the record stay in the grooves better, and possibly even play through a scratch with only minor hiccups where the scratch is present rather than skip through the entire song.
×