Jump to content

ThePeculiarParticle

Members
  • Content count

    50
  • Joined

  • Last visited

  • Days Won

    2

ThePeculiarParticle last won the day on November 6 2017

ThePeculiarParticle had the most liked content!

Community Reputation

3 Neutral

About ThePeculiarParticle

  • Rank
    Advanced Member
  1. Crash Course on Logic Gates

    Have you ever wondered how systems around you function? Like a passing glance at the thermostat and wonder how it maintains the temperature in your house. Well, just like any other system dealing with variables, there has to be logic to tell how other systems should work. In electrical systems, one of the most basic forms of logic comes through chips known as logic gates. These gates appear on chips, like the one below, where each prong serves a certain purpose. These chips can vary in size, holding a number of gates, but for our purposes, we will look at one with only four. VDD represents a pin needing to be connected to a voltage source, usually five volts, and Gnd means the pin needs to be connected to ground. The input pins follow the two paths leading into the same end of a gate, while the outputs are represented through single paths. This specific chip is made up of NAND gates which is shown by the shape the pathways lead into and out of. The main types of gates are referred to as “and”, “or”, and “not”. These gates then have multiple variations I'll discuss below, but these are the basics. Now, how does a circuit relate to logic, I hear you ask. Well, for simplicity, let's assume a circuit either has a voltage of zero or five volts. The zero volts is represented with a 0 and the five volts is represented with a 1. These signals go into a gate, converting it into a designated signal (also a 0 or a 1), used to cause another action. Below is a table showing the input and corresponding outputs of each gate. An example would be if I had two inputs, one in the form of a switch and another in the form of a light sensor. I want my cabin to turn it's lights if I hit my switch and it is night time out. When I turn my switch on it sends out a 1. When the sun goes down the light sensor sends out a 1. When both these signals reach an and gate it sends out a 1 to the light inside my house to turn on. Needless to say, there are systems with hundreds, even thousands, of variables and programmable logic controllers can store strings of gates onto one single chip, but that's a story for another time. As always thanks for reading! - ThePeculiarParticle
  2. The Physics in Album Covers

    Physics is all around us, and sometimes it is so visually awesome that it can make for great album covers. Pink Floyd: The Dark Side of the Moon One of the highest selling albums of all time, and having one of the most identifiable covers of all time, Pink Floyd should rightfully start up this list. The phenomenon shown is called dispersion of light. This occurs when white light hits an optically permeable surface. In this case, white light is hitting a prism. As white light passes through the prism, all the different components of white light separate by wavelength. This occurs due to each wavelength having a different angle of deviation. Shorter wavelengths, such as violet, have greater angles of refraction than longer wavelength colors, such as red. The result is a splay of colors each aligned in a rainbow to their corresponding wavelengths. Joy Division: Unknown Pleasures Another cover which can be easily recognized, or at least will be noticed, is Joy Division’s debut album. What you are actually seeing is a visualization of radio waves from a pulsar, in fact the first pulsar ever discovered. A radio pulsar is a neutron star which is spinning at incredibly high speeds. So this star, with a density ten trillion times denser than lead, is also generating a strong magnetic field from moving electrons. Due to this spin, electrical charges, and magnetic field, a radio signal was received at 1.337 second intervals. The picture above depicts eighty successive periods stacked on top of one another, and was taken straight from The Cambridge Encyclopaedia of Astronomy published in 1977. Despite being in earlier publications, the true creator of the design is not know, but if one thing is for sure, the image can still be found everywhere and this usage in 1979 was only the beginning of its use in pop culture. The Strokes: Is This It The cover to The Strokes Is This It was chosen for release of the 2001 album due to its beautiful psychedelic appearance. But what is it? Well, it is a picture taken from inside a bubble chamber. A bubble chamber is used to study electrically charged particles. How it works is that large bubble chambers are filled with incredibly hot liquid hydrogen. As the particles enter the chamber, a piston opens decreasing the pressure in the chamber. Charge particles created an ionized track which vaporizes the hydrogen creating visible bubble trails. Since the hydrogen is transparent, pictures can be taken in all three dimensions, mapping out the movements of the particles. So why is a different bubble chamber photo my profile picture? Well it has nothing to do with The Strokes. It's just a beautiful image, and that's what made most of these artists choose their own covers. Nature is beautiful in many ways, and being able to explain it with physics makes it just that much more enjoyable. As always thanks for reading! - ThePeculiarParticle
  3. Third Quarter in Review

    No doubt the course has gotten much harder in the transition to electricity and magnetism. The result is that I've needed to adapt a new approach to the course. I have tried watching videos then filling in my notes with information from the book and vice versa. For me watching the videos first worked much better. So, if anyone finds this blog, I'll certainly recommend that. But one of the most important things I can do is look back at the course and experience as a whole, despite having induction left, and say I wouldn't have it any other way. It's like climbing a mountain and, while it seems like a heavy task at first, the top is now in sight, with a bit of work left. The most exciting part of this year, besides writing these blogs, had to be finally finding where all these formulas came from, such as how work and forces are so interconnected now that we understand integrals and derivatives. The good news is that it only builds on from here. Well, my group agreed we would do a blog post sharing our future endeavors, and I'm happy to say that I will be attending the University of Rochester to pursue Optical Engineering. It specifically interests me in the area of integrating electrical and digital circuits but, since optics is such a wide field, that can only be compared to dipping my toe in the deep end of an Olympic sized swimming pool. This course has probably prepared me the most, compared to any other course, for what to expect in college, and for that I'm immensely grateful. Thank you FizziksGuy. The road isn't over yet but this year has been a large stepping off point into the next and I can't thank you enough for the help. This is kinda sad, being one of the last assigned blog posts I do, but it is not the end. There will be one more after this, which I am really excited for, and I will post a couple in fourth quarter. I legitimately love writing these and need to thank all of my readers and those who gave support, and even criticism, as this was one of the most fun projects I have had this year. As always thanks for reading! - ThePeculiarParticle
  4. What Is The Deal With Theremins?

    Anyone remotely into science fiction has heard the sound of a Theremin at least once, from its use in most 50’s movie to a variety of later Star Trek and Doctor Who sounds. It has been the sound of the future since its creator Leon Theremin unveiled it in 1928. Before I explain, what it is it is important you see what it looks like in use. For reference the Theremin playing begins at 1:00. So how does this machine work? Well, this connects back to our unit on capacitance. The human body has a natural capacitance, so when it moves into an electric field it can disturb it. In a Theremin an electromagnetic field is created by a radio frequency oscillating circuit. The two terminals are connected to two different circuits. The circuit connected to the vertical antenna is connected to a variable oscillator which can produce a range of frequencies, making the player’s movement in the vertical plane control the pitch of the instrument. The horizontal terminal has a fixed oscillator which generates waves at a constant frequency. A hand in the horizontal plane controls the volume of the output. When these two signals are “mixed” and amplified, the result is the haunting pitch you hear above. This instrument paved the way for the electronic era of instruments to come, so looking back, it is always important we acknowledge our roots. As always thanks for reading! - ThePeculiarParticle
  5. Sorry for the clickbait, I’m just trying to beat The Night King at his own game. The truth is I am just going to tell you what wireless charging is. Sorry to disappoint, but I don’t have a global conspiracy. I won't do it again. An emerging technology, which every company Samsung to Tesla are trying to jump on board with, is wireless charging, but believe it or not, this technology has been around since the 1960s. It’s called induction charging, and, as given by the name, is works through induction. So how does it work? Well, a magnet with a coil of wire wrapped around it is called an inductor. Just as a capacitor stores voltage in an electrical field, when current is run through the wires of an inductor voltage is stored in a magnetic field. Put a device which has another induction coil, within the magnetic field, and the energy will be transformed back into current charging the battery. So why is such a simple technology just coming into our houses now? Well, for one, powerful enough magnets and small enough electronics are now becoming cheaper and more readily available by the year. Before, what took a magnet the size of a loaf of bread, can now be put into a charger that sits nicely on top of your nightstand. Its earliest usage within the home was actually in bulky electric toothbrushes, but now companies have a variety of wire free applications. One of the more talked about use of the technologies is how modifications can be made to Tesla Model S so that it can wirelessly charge by parking over designated spots. So what are the drawbacks? Well induction charging is usually 75%-80% as efficient as wired charging, so times to charge are usually slower. No to mention, charging rates drop off further the farther the coils are separated. The efficiency decreases usually by square inverse ratio. The usage of resonant inductive coupling can make this distance much greater, but the final problem is cost. The charging stations alone for inductive chargers are more expensive, not to mention, only the latest lines of devices seem to support wireless charging, and, if you are anything like me, you will not be paying top dollar just to get a bigger screen and a cool charging pad. In the future, however, I can see this becoming a new norm for phones, as not wearing down and needing to fix a charging port is always a nice additive bonus for consumer and supplier. So be sure to look for this technology in the future. As always thanks for reading! - ThePeculiarParticle
  6. On The Topic of Pole Reversals

    Based on a variety of evidence, the last time the Earth's magnetic poles flipped was 750,000 years ago. Going off of this, many sources say we could face another flip at any point. Now, before you panic and begin blasting REM out of the nearest speakers, I just wanted to fill you in on what the process looks like. The process is much longer than most people think when first visualizing it. It is actually a process which is estimated to take 1000-10000 years. To explain why, the main factor behind the Earth's magnetic field is believed to be the liquid iron part of the Earth's core. The alignment of iron and it's flow creates a magnetic field surrounding the Earth. As the iron won't all realign in a matter of days in the transition period, Earth's field appears to grow weaker as orientations move, then multiple different poles may form, until eventually the poles are reoriented and effectively flipped. Will this cause confusion for many electrical systems, animals, and humans? Yes. One of the biggest dangers, however, is the lack of a strong magnetic field protecting Earth from harmful solar flares, which could wipe out modern electrical systems as a whole. This is a very real fear, with a severe storm occurring in 1859 known as the Carrington Event. This storm, even with a fully functioning magnetic field, managed to destroy large amounts of telegraph communications and caused auroras so strong they were seen in the Caribbean. While strong storms like this are rare, weak ones are fairly frequent. So, if the poles were to weaken, even the effects of a weak storm would be very destructive. Humanity would certainly not be the same after a direct hit. Anyways, don’t panic, much of this is out of anyone's control anyways, besides, even with this threat looming over our heads, we continue to make scientific progress without hesitation, and, like any other hardship, we keep our heads up and move forward. So, to sum it up, the poles won't just flip one morning and be switched the next, it is a process which takes numerous lifetimes. As always thanks for reading! - ThePeculiarParticle
  7. Circuit Software in the Classroom

    Shown above is an example of a simple circuit designed using circuits.io through Tinkercad. During class this quarter, I began thinking how a software I once used could be integrated into a lab for students to be able to experiment with electrical components inside, and outside the classroom. The one I specifically have in mind is circuits.io. I began using this for a digital electronics class in 10th grade and it soon became a valuable tool when tinkering. The only thing that has changed is that you now create and edit circuits through www.tinkercad.com. Being able to create circuit and test whether it will function correctly, before you damage components, is a useful tool when trying to conserve components. You can check voltage, resistance, current, and capacitance within a circuit very easily using tools provided. The user interface is very simplistic and appealing (no spaghetti wires). Also, the inclusion of Arduino simulation is great for tinkerers to test out and write out code without having the physical board on them. While students would not encounter experimental error they would find in the real world, I still believe it would be a valuable tool to help them comprehend the ideal functions of certain components in circuits. I also have not mentioned the best part yet… ITS FREE. This software is definitely a hidden gem which I could see being used in the classroom in the future for not only Physics C, but all physics classes, and I encourage anyone who is mildly curious to sign up for an account and check it out.
  8. The Physics Behind Transition Lenses

    Well, before that snowy and cold winter break, one of the cloudiest cities in the nation was beginning to see the sun. It was while walking around I realized how beneficial my old transition lenses were. Then it hit me, how exactly do they work over and over again. As it turns out, the answer is a simple chemical reaction. Each transition lens has millions of silver chloride particles. These particles only react when exposed to UV light hence transition lenses do not work when driving. Natural light or light through many windows does not contain light with UV wavelengths. When exposed to UV, the atoms oxidize and separate. The separated chlorine and oxygen then cluster together blocking some of the incoming light. This appears as darkening of lens. This process then reverses, in the absence of UV light, but at a much slower rate than it occurred. Anyone who has walked from outside into a dark room wearing transitions only to find you can’t see anything with or without glasses knows what I mean. Well they turn back by a completely different process called thermal dependency which takes longer. The analogies I have seen compare the molecules to a pot of boiling water. Molecules which have more energy “open” at a faster rate clearing the lens. If the temperature is warmer the more molecules are left open than in colder weather. The result is that in the cold your lenses become darker and require more time to open and become clear once again. So to summarize, transition lenses rely on the physics of wavelengths of light and thermal dependence to make them an adjusting accessory. So when you walk out school for summer vacation remembers that physics doesn't stop when you leave the classroom, it happens right before your very eyes. As always thanks for reading! - ThePeculiarParticle
  9. What is with the Hype Surrounding Hyperloop?

    It is a known fact that the United States is lagging behind in the area of infrastructure. The true problem with this question is how far forward should we upgrade in a world where other countries have passenger bullet trains. A solution to this may come from of a new era of transportation technology referred to as Hyperloops. The open sourced design was released by a joint team working with SpaceX and Tesla to be modified by the public and worked into a functioning design. The overall concept of this type of transportation surrounds the idea of a large car which travels through a system of tubing located above or below ground. Many designs from here differ with the car being levitated on electromagnets/air, traveling through a vacuum tube system, or being propelled by a fan system. Many companies have stepped in unveiling their prototypes for this system of travel, most recently the company Virgin, who claims their design would reach speeds of 760 miles per hour. To put that in perspective, if a straight track was put between Rochester and New York City, the travel time would only be around 32 minutes. It's a very large claim for a large company who wishes to see a final working route by 2021. Here is a travel calculator if you wish have a little fun. https://hyperloop-one.com/route-estimator/rochester-us/new-york-city-us/travel-times Am I skeptical? Yes. How will a vacuum seal be maintained over hundreds of miles? How will passengers be slowed gradually in the event of an emergency? How well can people be protected in a hunk of metal moving over 700 miles per hour? If there is something like a fire, how would people escape their car if they are surrounded by miles of vacuum tubes? Then again, around one hundred years ago, people would have had the same questions regarding the thousands of hunks of metal which carry thousands of people through our skies every day. Only the future will truly know what is in store for the technology of transportation.
  10. Oscilloscope Art

    If you have ever seen a black and white horror movie with a mad scientist in his lab chances are that in the background you saw one of these: Well, this machine is called an oscilloscope and its primary function is to measure signals of voltages in relation to time. By visualizing signals in the X and Y planes, values such as amplitude, frequency, rise time, and distortion can all be measured from the visual representations of waves displayed on the screen. Its applications range from analyzing electrical systems to heart monitors. In the field this is a valuable tool to measure waveforms, but there is an artistic side to it as well, which is what I am here to talk about. A channel, called Jerobeam Fenderson, uses an oscilloscope to register audio signals. He uses the audio signals not only as the music for the video, but to create visuals on the screen. This results in some very interesting music videos. This just goes to show that science can go hand in hand with art in many surprising ways. Here is his basic overview: Here is one of his music videos:
  11. Why do Bananas Have a Curve?

    Just got an really informative answer to a question I don't think I ever would have asked in my lifetime. Really good job!
  12. What has Elon Done?

    Can't make leaps forward without tripping along the way. Really cool post. We will have to rock paper scissors over who gets to write about Hyperloop.
  13. How a Rock and a Hyperdrive Could Defeat the Empire and the First Order

    It would certainly have made the films A LOT shorter.
  14. Physics in Food

    I remember watching a show which followed a chef on the science channel where he put spins on classic dishes for special party events. While he would cook he would explain the science behind said dishes. Most of it concerned molecular gastronomy and was quite interesting, but I can't find the name of the show. Really great post, and a good way to make me hungry!
  15. So Who is Gauss?

    That's some really cool insight! I'll agree with you that Gauss's law is one of the most difficult concepts so far. I think the difficulty stems from how different it is from anything we have ever learned. Don't worry it will take time but I know we will get it.

Terms of Use

The pages of APlusPhysics.com, Physics in Action podcasts, and other online media at this site are made available as a service to physics students, instructors, and others. Their use is encouraged and is free of charge. Teachers who wish to use materials either in a classroom demonstration format or as part of an interactive activity/lesson are granted permission (and encouraged) to do so. Linking to information on this site is allowed and encouraged, but content from APlusPhysics may not be made available elsewhere on the Internet without the author's written permission.

Copyright Notice

APlusPhysics.com, Silly Beagle Productions and Physics In Action materials are copyright protected and the author restricts their use to online usage through a live internet connection. Any downloading of files to other storage devices (hard drives, web servers, school servers, CDs, etc.) with the exception of Physics In Action podcast episodes is prohibited. The use of images, text and animations in other projects (including non-profit endeavors) is also prohibited. Requests for permission to use such material on other projects may be submitted in writing to info@aplusphysics.com. Licensing of the content of APlusPhysics.com for other uses may be considered in the future.

×