Jump to content

ThePeculiarParticle

Members
  • Content count

    40
  • Joined

  • Last visited

  • Days Won

    2

ThePeculiarParticle last won the day on November 6 2017

ThePeculiarParticle had the most liked content!

Community Reputation

3 Neutral

About ThePeculiarParticle

  • Rank
    Advanced Member
  1. Why do Bananas Have a Curve?

    Just got an really informative answer to a question I don't think I ever would have asked in my lifetime. Really good job!
  2. What has Elon Done?

    Can't make leaps forward without tripping along the way. Really cool post. We will have to rock paper scissors over who gets to write about Hyperloop.
  3. How a Rock and a Hyperdrive Could Defeat the Empire and the First Order

    It would certainly have made the films A LOT shorter.
  4. Physics in Food

    I remember watching a show which followed a chef on the science channel where he put spins on classic dishes for special party events. While he would cook he would explain the science behind said dishes. Most of it concerned molecular gastronomy and was quite interesting, but I can't find the name of the show. Really great post, and a good way to make me hungry!
  5. So Who is Gauss?

    That's some really cool insight! I'll agree with you that Gauss's law is one of the most difficult concepts so far. I think the difficulty stems from how different it is from anything we have ever learned. Don't worry it will take time but I know we will get it.
  6. Speed of Light Fun

    Such an awesome subject and very well explained. Really cool we thought of writing about the same topic without knowing about the others interest in it. You know what they say, great minds think alike.
  7. A Heated Runway?

    Really cool topic. There are prototypes of smart roads which actually display useful information to drivers. I can only see this technology growing in the future.
  8. Physics Behind a Fly Fishing Cast

    Anyone who is friends with me knows I love fishing of any kind. The one which I feel is the most labor intensive per cast is most certainly fly fishing, and know any of the friends I’ve taught even the most basic casts will agree. For those who aren't familiar with fly fishing, it separates itself from any other kind with the type of rod, reel, and cats the user makes. Regular fishing uses a reel where the user casts out in one fluid motion where they wish to go. In fly fishing, the flies, or baits, are so small that the caster needs to swing the line through the air in order to get it anywhere they want. So how are casts of over 100 feet possible with flies which weigh less than a gram? Well it is actually the same principle behind a whip. A fly cast begins with a person raising the rod tip behind them while keeping tension in the line. Then the caster rockets their wrist forward. This flick of a wrist is all the momentum that is required to rocket the line forward. The small quick movement on the end of the rod translates to an incredibly fast traveling rod tip, acting like a lever arm spanning anywhere between 8 and 10 feet, resulting in a large amount of torque. Once the wrist has finished its flick around 1:30 position, then the momentum is transferred through the rod and to the rod tip which bends similar to a whip. The momentum doesn't stop there though, and this is the secret to a far reaching cast: the line. The momentum is transferred to the line which weighs considerably more than the fly itself in order to travel the needed distance. As the momentum travels from the fisherman’s arm, to rod, to line, the law of conservation of momentum applies. So, when momentum is transferred between each part the mass decreases, resulting in an increasing velocity of said part. By the time it reaches the end of the floating line to the leader, it is whippings through the air at incredible speeds. As mentioned before, this movement parallels the end of a whip. This slowed down footage of a cast shows the momentum being transferred through all mediums in order to cast the fly. So, while I can explain the physics behind a cast, I still can't explain why whenever I have the prime opportunity to cast towards a fish, my fly always ends up snagged in a tree. That though is a problem to be solved another day. I'm guessing it's some kind of undiscovered attractive force between the two. As always thanks for reading! - ThePeculiarParticle
  9. Go With the Flow

    Ever add too much food coloring or dye to water and wish there was a way to separate it out? “Yea it happens all the time TPP what about it?” I hear you say. Well I just wanted to show a phenomenon where the mixing of different fluids can be reversed, but it only occurs under certain circumstances. Laminar flows only occur in situations depending on the viscosity or velocity of a fluid. When fluids mix slower, there is less chance of a turbulent flow where the creation of eddies. Eddies are what cause substances to mix in other planes than just lateral. This action is immensely harder to reverse due to the chaos of mixing turbulence brings. When Laminar flows occur, the two parts of the mixture only flow in the lateral plane, allowing the layers to slide past one another. The result is that this mixing can be easily reversed by reversing the motion which mixed it originally. So, I’m afraid the dyed water will remain a cluster of colors, but, on the bright side, you now have a great party trick to show off and impress your friends. Here is a helpful video on the subject: As always thanks for reading! - ThePeculiarParticle
  10. Two Cool Physics Sources

    So, as a recap for mid year, I wanted to talk about two types of physics related media . These two sources have inspired ideas for blog posts, and are things I listen or watch for enjoyment. So without further adieu, here they are: 1. Twenty Thousand Hertz - What is it? Well, it is a podcast about sound. Wait don’t leave just yet... It is a lot better than it sounds, I swear. This labor of love connects the sounds we hear everyday to physics, psychology, ecology, and even history. The topics range, with subjects that could interest most listeners, and I cannot recommend this series enough. If you take anything away from this post, it would be give one a try. One of my favorites is simply titled “Space”, where sound is described interacting with different environments, including what a person’s voice would sound like on different planets. Whatever your taste is there is, an episode for it. https://www.20k.org/archive 2. The next channel is more for those interested in engineering. It is not as widely known as some other favorites such as VSauce or Mark Rober (both of which I cannot recommend enough), but that's because it is a specific niche. If you are more curious in the engineering designs which have shaped current society and how they work alongside physics, then this is the place to be. Whether you are sure of a future in engineering or only dabble, then this is a good place to find out if something like this is a path which interests you. https://www.youtube.com/channel/UCR1IuLEqb6UEA_zQ81kwXfg/videos As always thanks for reading! - ThePeculiarParticle
  11. How Different Pitches "Break"’

    Inspired by AaronSwims’s blog post title, I wanted to make my own post on a completely different topic. I wanted to focus on resonance and, while we briefly touched upon it last year, I feel the need to write about it. Resonance, in its most basic definition, is “the condition in which an object or system is subjected to an oscillating force having a frequency close to its own natural frequency”. So how do we see this every day? Bang a pot, pan, glass, even sheet metal and you will find that a noise of a certain pitch emanates from it. If there is little dampening (energy lost in other forms), then this frequency is close to that material or objects natural frequency. This natural frequency is what a system oscillates at when not disturbed by a continuous external force. A glass breaker sings loud so that the amplitude of air molecules moving is quite large and transferring more energy. If the pitch matches the resonance frequency, then the amplitudes add up, with the common example being compared to pushing a kid on a swing. Small pushes, over a given amount of time, will eventually lead to the swing having a much larger amplitude than when it started. In a material, such as glass, where it is brittle and prone to imperfections, the frequency and volume of a person's voice has the resonance which results in it shattering into hundreds of pieces. As always thanks for reading! - ThePeculiarParticle
  12. ICE ICE BABY!

    “Alright stop, collaborate and listen Ice is back with my brand new invention Something grabs a hold of me tightly Flow like a harpoon daily and nightly Will it ever stop yo I don't know Turn off the lights and I'll glow.” Why would I start this blog up with Vanilla Ice’s song “Ice Ice Baby”? Well Ice is the subject of today’s blog. “BUT TPP, HOW MUCH CAN YOU TALK ABOUT ICE?” I hear you ask off in the distance from behind your computer… well, honestly, a lot. I love ice, from chilling hot summer drinks, to fishing through it in the winter. In the Northeast, we get so much of it that you have to not fully hate it to live up here. Did you know there is more than one type of ice? Actually, there are at least 17! Under normal atmosphere and temperature we see hexagonal ice (or ice I). By changing pressure and temperature, the other forms can be created from here. The table below shows how they are formed. And with hexagonal ice forming polar bonds, it is able to expand up to 9% of its original volume in freshwater. We have all seen the damage this can do in potholes in the road, but how much force does it have? Well ice can withstand 43,511 pounds per square inch before it turns into ice II. So it is very strong, to the point that instead of continuing to expand, it turns into another type of ice altogether. This table shows a few of the different types of ice and their required conditions they need to form. The first property I want to discuss is why ice is so slippery. The truth is dry ice is not very slippery at all. The problem occurs when melting begins. This can be either due to increasing temperatures melting the top layer, or the amount of pressure being placed on its surface. Pressure has much more to do with the phenomena than you think as the more pressure something applies to the surface the pressure increases and results in a lowered boiling point. This is an obvious problem for drivers in the winter who slip and slide due to the weight of their vehicles. But, while it can cause chaos on the roads, it is what gives joy in ice rinks everywhere. Ever wonder why skates are blades? That's because it centers all of one's body weight on an incredibly small area in order to maximize psi. The result is a smooth glide across a thin layer of water. The second property is that it floats on water. I'll gloss over this since it has been ingrained in us since 3rd grade at the latest, but the truth is that this property is one of the most important. If ice simply sank and became denser whenever it froze then it would make it much harder for life to survive during times of cooling. An example would be the microbes found underneath Antarctic ice which haven't seen the light of day in millions of years. The fact it floats helps us in the summer with our hot drinks, but also when I ice fish in the winter. I can confidently place myself on four inches of black ice (not white ice which is much weaker as air is trapped in it) and I know due to its strength and buoyancy my bodyweight will be safely kept out of the freezing water. Ice is never something I mess around with, just because ice is thick in one spot doesn't mean it is anywhere else. I guess I'm just trying to say don't do anything dumb… on a physics board… filled with incredibly bright kids. Anyways, that's my rant about ice. There's other topics I may touch in the future, such as the triple point of water, but for now I'm just going to chill out. I also have some awesome videos for you guys reading this far. This video, while sounding eerie and like the ice is breaking, is actually the sound of ice forming. As it expands and grows it creates tiny pressure cracks which give off these odd sounds. This clip shows the full range of the ice singing from bass tones all the way to high pings. This video is taken from planet Earth and shows another odd behavior of ice as it forms in salt water. As always thanks for reading! - The Peculiar Particle
  13. STAR WARS SPOILERS AHEAD!!!!! It's never a good idea to go to a science fiction film and look for scientific inaccuracies. That being said, a lot of things from episode VIII a lot of things left a bitter taste in my mouth, but I'm here to talk about one scientific inaccuracy which leaves a Death Star sized hole in the story’s plot for all movies. The one scene I am referring to occurs near the middle of the film when a large resistance ship, called the Raddus, aims itself at Snoke’s ship, called the Supremacy, and rams into it at light speed. This results in the ship being torn in two and a large explosion. Now everywhere I look people say the ships in star wars move through hyperspace, which is skipping dimension to dimension, but multiple times in the movie the term light speed is used. It's even used in the original trilogy by Han Solo. Also, if they were going through dimensions where they cannot interact with the mass of other things as the canon claims, in theory, the ship would not have hit the other ship. The point being is that I always shut my mind off to the idea of a collision at such speeds in order to enjoy the movies, but this changes all of that. Now, knowing that a ship can collide with another with such energy, it basically invalidates all the efforts of the rebels and the empire in the original trilogy. A shot of the scene where the Supremacy is struck by the Raddus. Let's assume that that the ships are going slower than the speed of light, even 95% (284,802,835 m/s). Also, let’s assume that an object does not gain mass as it approaches the speed of light which would make our energy value greater than it already is. Given the estimate for the mass of an X-wing is around 5500 kg, the kinetic energy of one traveling at this speed is 2.2306E+20 J. The energy of the asteroid which killed the dinosaurs was estimated to be about 1E+23 J. While that is on a different magnitude, it would only take a 25,000 kg object to have the same amount of energy. To put that in perspective, that is about 10 of the 2,300,000 limestone blocks which make up the Great Pyramid. So in this sense, a Death Star was never needed. Just strap a engine onto a random large asteroid and hurl it at a planet. No master death star plans, no single point to be used to blow it up., just a rock with a thruster on it. And as for the rebels, they could have done the same thing with the Death Star and lost many less lives. So there's the little rant I have about that scene, which while cool, puts a bigger hole in the plot than it did in that destroyer. I’m just going to get back to work and pretend that milk scene never happened… As always, thanks for reading - ThePeculiarParticle
  14. A Quarter in Review (The Sequel)

    Second quarter was a much different quarter than last quarter, specifically the last half. Mechanics ended, giving way to the electricity and magnetism units, and in turn giving me a solid kick in the rear. All other classes are managing to heat up as well, in fact, they have been for a while. I tried doing something different by writing my blogs in a word document, separately from just posting them, to see if I want to add anything. This only resulted I'm me scrapping a few ideas which were mostly written because I had not liked them enough. It also didn't help with staying ahead because no blogs went out. There is a lesson and a half learned. I would say the major success of this quarter was doing a lab in less than 20 minutes because it was so well planned out, and honestly that is a big help for the future. Other than those things, and an 80 question WebAssign, I would say it was a pretty fun and challenging quarter, just as I’ve come to expect. Now that this quarter is coming to an end, it is time to buckle up and brace for the exams ahead. Good luck everyone! Thanks for Reading! - ThePeculiarParticle
  15. The Oh My God Particle

    On October 15th 1991, an event which challenged our scientific understanding of our universe occurred. The particle that was registered is now referred to as the “Oh My God Particle” after the statement blurted out upon detecting it. Under the night sky of Utah’s Cosmic Ray Detector, a particle was recorded going 99.99999999999999999999951% the speed of light. To put that in perspective, that is faster than even the highest recorded speed of a proton recorded in the Large Hadron Collider, which was 99.999999% the speed of light. It takes increasingly more energy to speed up a particle as it approaches the speed of light, making this difference quite significant. This means if we raced the OMG particle against a particle with plank energy ( 0.00000000000000000000049% speed of light), it would take 2.59×1010 the age of the universe for the particle with plank energy to gain 1 cm on the OMG particle. So how do particles naturally accelerate to these speeds in space? Well that's the question many scientists today are asking. Physicist in Argentina, in the Pierre Auger Observatory, believed they were on the right track when they saw that these types of particles emitted from the hearts of certain galaxies, but over time the data showed this assertion did not hold water. As of 2014, in the same state where the first particle was recorded, scientists working the Telescope Array, made up of 500 particle detectors found that these particles seemed to emanate from one portion of our night sky. This indicated a source much closer than previously thought. As of recently, no further findings have been published. Yet another space mystery we may have a chance of solving in my lifetime, but in the meantime we will just have to look up at the skies and wonder. As always thanks for reading! - ThePeculiarParticle

Terms of Use

The pages of APlusPhysics.com, Physics in Action podcasts, and other online media at this site are made available as a service to physics students, instructors, and others. Their use is encouraged and is free of charge. Teachers who wish to use materials either in a classroom demonstration format or as part of an interactive activity/lesson are granted permission (and encouraged) to do so. Linking to information on this site is allowed and encouraged, but content from APlusPhysics may not be made available elsewhere on the Internet without the author's written permission.

Copyright Notice

APlusPhysics.com, Silly Beagle Productions and Physics In Action materials are copyright protected and the author restricts their use to online usage through a live internet connection. Any downloading of files to other storage devices (hard drives, web servers, school servers, CDs, etc.) with the exception of Physics In Action podcast episodes is prohibited. The use of images, text and animations in other projects (including non-profit endeavors) is also prohibited. Requests for permission to use such material on other projects may be submitted in writing to info@aplusphysics.com. Licensing of the content of APlusPhysics.com for other uses may be considered in the future.

×