Search the Community
Showing results for tags 'centripetal force'.
Found 8 results

Video Discussion: Determining the Force Normal on a Toy Car moving up a Curved Hill
Flipping Physics posted a topic in Video Discussions
Name: Determining the Force Normal on a Toy Car moving up a Curved Hill Category: Rotational Motion Date Added: 20171002 Submitter: Flipping Physics A 0.453 kg toy car moving at 1.15 m/s is going up a semicircular hill with a radius of 0.89 m. When the hill makes an angle of 32° with the horizontal, what is the magnitude of the force normal on the car? Want Lecture Notes? This is an AP Physics 1 topic. Content Times: 0:08: Translating the problem 1:01 Clarifying the angle 1:51 Drawing the free body diagram 3:20 Summing the forces 4:22 How the tangential velocity and force normal change Multilingual? Please help translate Flipping Physics videos! Previous Video: Mints on a Rotating Turntable  Determining the Static Coefficient of Friction Please support me on Patreon! Thank you to Aarti Sangwan, Scott Carter, and Christopher Becke for being my Quality Control Team for this video. Determining the Force Normal on a Toy Car moving up a Curved Hill
 problem
 newtons second law
 (and 8 more)

Determining the Force Normal on a Toy Car moving up a Curved Hill
Flipping Physics posted a video in Rotational Motion
A 0.453 kg toy car moving at 1.15 m/s is going up a semicircular hill with a radius of 0.89 m. When the hill makes an angle of 32° with the horizontal, what is the magnitude of the force normal on the car? Want Lecture Notes? This is an AP Physics 1 topic. Content Times: 0:08: Translating the problem 1:01 Clarifying the angle 1:51 Drawing the free body diagram 3:20 Summing the forces 4:22 How the tangential velocity and force normal change Next Video: Demonstrating Why Water Stays in a Bucket Revolving in a Vertical Circle Multilingual? Please help translate Flipping Physics videos! Previous Video: Mints on a Rotating Turntable  Determining the Static Coefficient of Friction Please support me on Patreon! Thank you to Aarti Sangwan, Scott Carter, and Christopher Becke for being my Quality Control Team for this video. 
What is the Maximum Speed of a Car at the Top of a Hill?
Flipping Physics posted a video in Rotational Motion
What is the maximum linear speed a car can move over the top of a semicircular hill without its tires lifting off the ground? The radius of the hill is 1.8 meters. Want Lecture Notes? This is an AP Physics 1 topic. Content Times: 0:08 Translating the problem 0:42 Drawing the free body diagram and summing the forces 1:45 Why the force normal is zero in this situation 2:26 Finishing the problem Next Video: Determining the Force Normal on a Toy Car moving up a Curved Hill Multilingual? Please help translate Flipping Physics videos! Previous Video: Introductory Centripetal Force Problem  Car over a Hill Please support me on Patreon! Thank you to Scott Carter and Christopher Becke for being my Quality Control Team for this video. 
Video Discussion: What is the Maximum Speed of a Car at the Top of a Hill?
Flipping Physics posted a topic in Video Discussions
Name: What is the Maximum Speed of a Car at the Top of a Hill? Category: Rotational Motion Date Added: 20170918 Submitter: Flipping Physics What is the maximum linear speed a car can move over the top of a semicircular hill without its tires lifting off the ground? The radius of the hill is 1.8 meters. Want Lecture Notes? This is an AP Physics 1 topic. Content Times: 0:08 Translating the problem 0:42 Drawing the free body diagram and summing the forces 1:45 Why the force normal is zero in this situation 2:26 Finishing the problem Multilingual? Please help translate Flipping Physics videos! Previous Video: Introductory Centripetal Force Problem  Car over a Hill Please support me on Patreon! Thank you to Scott Carter and Christopher Becke for being my Quality Control Team for this video. What is the Maximum Speed of a Car at the Top of a Hill?
 problem
 newtons second law
 (and 9 more)

Video Discussion: Introductory Centripetal Force Problem  Car over a Hill
Flipping Physics posted a topic in Video Discussions
Name: Introductory Centripetal Force Problem  Car over a Hill Category: Rotational Motion Date Added: 20170910 Submitter: Flipping Physics A 453 g toy car moving at 1.05 m/s is going over a semicircular hill with a radius of 1.8 m. When the car is at the top of the hill, what is the magnitude of the force from the ground on the car? Want Lecture Notes? This is an AP Physics 1 topic. Content Times: 0:08 Translating the problem 1:49 Drawing the free body diagram 2:43 We need to sum the forces in the indirection 3:22 The “indirection” is positive. The “outdirection” is negative 4:06 Identifying the centripetal force in this problem 4:54 Solving the problem … finally. 6:15 Kit compares the magnitudes of the force normal and force of gravity Thank you to Kit from Gorilla Physics for your help with this video!! Multilingual? Please help translate Flipping Physics videos! Previous Video: Centripetal Force Introduction and Demonstration Please support me on Patreon! Thank you to Scott Carter and Christopher Becke for being my Quality Control Team for this video. Introductory Centripetal Force Problem  Car over a Hill
 problem
 newtons second law
 (and 8 more)

Introductory Centripetal Force Problem  Car over a Hill
Flipping Physics posted a video in Rotational Motion
A 453 g toy car moving at 1.05 m/s is going over a semicircular hill with a radius of 1.8 m. When the car is at the top of the hill, what is the magnitude of the force from the ground on the car? Want Lecture Notes? This is an AP Physics 1 topic. Content Times: 0:08 Translating the problem 1:49 Drawing the free body diagram 2:43 We need to sum the forces in the indirection 3:22 The “indirection” is positive. The “outdirection” is negative 4:06 Identifying the centripetal force in this problem 4:54 Solving the problem … finally. 6:15 Kit compares the magnitudes of the force normal and force of gravity Thank you to Kit from Gorilla Physics for your help with this video!! Next Video: What is the Maximum Speed of a Car at the Top of a Hill? Multilingual? Please help translate Flipping Physics videos! Previous Video: Centripetal Force Introduction and Demonstration Please support me on Patreon! Thank you to Scott Carter and Christopher Becke for being my Quality Control Team for this video.
 force normal
 problem
 (and 8 more)

Video Discussion: AP Physics C: Rotational Kinematics Review (Mechanics)
Flipping Physics posted a topic in AP Physics C
Name: AP Physics C: Rotational Kinematics Review (Mechanics) Category: Uniform Circular Motion Date Added: 20170409 Submitter: Flipping Physics Calculus based review of instantaneous and average angular velocity and acceleration, uniformly angularly accelerated motion, arc length, the derivation of tangential velocity, the derivation of tangential acceleration, uniform circular motion, centripetal acceleration, centripetal force, nonuniform circular motion, and the derivation of the relationship between angular velocity and period. For the calculus based AP Physics C mechanics exam. Want Lecture Notes? Content Times: 0:10 Instantaneous and Average Angular Velocity and Acceleration 1:14 Uniformly Angularly Accelerated Motion 2:16 Arc Length 3:22 Tangential Velocity Derivation 4:29 Tangential Acceleration Derivation 6:03 Uniform Circular Motion and Centripetal Acceleration 8:04 Centripetal Force 9:20 NonUniform Circular Motion 10:21 Angular Velocity and Period Relationship Derivation Multilingual? Please help translate Flipping Physics videos! AP Physics C Review Website Next Video: AP Physics C: Rotational Dynamics Review  1 of 2 (Mechanics) Previous Video: AP Physics C: Momentum, Impulse, Collisions and Center of Mass Review (Mechanics) Please support me on Patreon! Thank you to Natasha Trousdale, Aarti Sangwan, and Jen Larson for being my Quality Control team for this video. AP Physics C: Rotational Kinematics Review (Mechanics)
 centripetal acceleration
 centripetal
 (and 13 more)

AP Physics C: Rotational Kinematics Review (Mechanics)
Flipping Physics posted a video in Uniform Circular Motion
Calculus based review of instantaneous and average angular velocity and acceleration, uniformly angularly accelerated motion, arc length, the derivation of tangential velocity, the derivation of tangential acceleration, uniform circular motion, centripetal acceleration, centripetal force, nonuniform circular motion, and the derivation of the relationship between angular velocity and period. For the calculus based AP Physics C mechanics exam. Want Lecture Notes? Content Times: 0:10 Instantaneous and Average Angular Velocity and Acceleration 1:14 Uniformly Angularly Accelerated Motion 2:16 Arc Length 3:22 Tangential Velocity Derivation 4:29 Tangential Acceleration Derivation 6:03 Uniform Circular Motion and Centripetal Acceleration 8:04 Centripetal Force 9:20 NonUniform Circular Motion 10:21 Angular Velocity and Period Relationship Derivation Multilingual? Please help translate Flipping Physics videos! AP Physics C Review Website Next Video: AP Physics C: Rotational Dynamics Review  1 of 2 (Mechanics) Previous Video: AP Physics C: Momentum, Impulse, Collisions and Center of Mass Review (Mechanics) Please support me on Patreon! Thank you to Natasha Trousdale, Aarti Sangwan, and Jen Larson for being my Quality Control team for this video.
 centripetal acceleration
 centripetal
 (and 13 more)
Terms of Use
The pages of APlusPhysics.com, Physics in Action podcasts, and other online media at this site are made available as a service to physics students, instructors, and others. Their use is encouraged and is free of charge. Teachers who wish to use materials either in a classroom demonstration format or as part of an interactive activity/lesson are granted permission (and encouraged) to do so. Linking to information on this site is allowed and encouraged, but content from APlusPhysics may not be made available elsewhere on the Internet without the author's written permission.
Copyright Notice
APlusPhysics.com, Silly Beagle Productions and Physics In Action materials are copyright protected and the author restricts their use to online usage through a live internet connection. Any downloading of files to other storage devices (hard drives, web servers, school servers, CDs, etc.) with the exception of Physics In Action podcast episodes is prohibited. The use of images, text and animations in other projects (including nonprofit endeavors) is also prohibited. Requests for permission to use such material on other projects may be submitted in writing to info@aplusphysics.com. Licensing of the content of APlusPhysics.com for other uses may be considered in the future.