Search the Community
Showing results for tags 'arc length'.
Found 12 results

Tangential Acceleration Introduction with Example Problem  Mints on a Turntable
Flipping Physics posted a video in Rotational Motion
Tangential Acceleration is introduced and visualized. Example problem is worked through. We even relate arc length, tangential velocity, and tangential acceleration via the derivative! Example: A record player is plugged in and uniformly accelerates to 45 revolutions per minute in 0.85 seconds. Mints are located 3.0 cm, 8.0 cm, and 13.0 cm from the center of the record. What is the magnitude of the tangential acceleration of each mint? Want Lecture Notes? This is an AP Physics 1 topic. Content Times: 0:21 The tangential acceleration equation 0:55 Translating the example problem 2:13 Solving for angular acceleration 3:02 Solving for tangential accelerations 4:16 Visualizing the tangential accelerations 5:05 Using the derivative to relate arc length, tangential velocity, and tangential acceleration Multilingual? Please help translate Flipping Physics videos! Next Video: Demonstrating the Directions of Tangential Velocity and Acceleration Previous Video: Introductory Tangential Velocity Problem  Mints on a Turntable Please support me on Patreon! Thank you to Christopher Becke and Natasha Trousdale for being my Quality Control Team for this video.
 record
 derivative
 (and 8 more)

Video Discussion: Tangential Acceleration Introduction with Example Problem  Mints on a Turntable
Flipping Physics posted a topic in Video Discussions
Name: Tangential Acceleration Introduction with Example Problem  Mints on a Turntable Category: Rotational Motion Date Added: 20170813 Submitter: Flipping Physics Tangential Acceleration is introduced and visualized. Example problem is worked through. We even relate arc length, tangential velocity, and tangential acceleration via the derivative! Example: A record player is plugged in and uniformly accelerates to 45 revolutions per minute in 0.85 seconds. Mints are located 3.0 cm, 8.0 cm, and 13.0 cm from the center of the record. What is the magnitude of the tangential acceleration of each mint? Want Lecture Notes? This is an AP Physics 1 topic. Content Times: 0:21 The tangential acceleration equation 0:55 Translating the example problem 2:13 Solving for angular acceleration 3:02 Solving for tangential accelerations 4:16 Visualizing the tangential accelerations 5:05 Using the derivative to relate arc length, tangential velocity, and tangential acceleration Multilingual? Please help translate Flipping Physics videos! Next Video: Demonstrating the Directions of Tangential Velocity and Acceleration Previous Video: Introductory Tangential Velocity Problem  Mints on a Turntable Please support me on Patreon! Thank you to Christopher Becke and Natasha Trousdale for being my Quality Control Team for this video. Tangential Acceleration Introduction with Example Problem  Mints on a Turntable
 record
 derivative
 (and 8 more)

Introductory Tangential Velocity Problem  Mints on a Turntable
Flipping Physics posted a video in Rotational Motion
Three mints are sitting 3.0 cm, 8.0 cm, and 13.0 cm from the center of a record player that is spinning at 45 revolutions per minute. What are the tangential velocities of each mint? Want Lecture Notes? This is an AP Physics 1 topic. Content Times: 0:08 Translating the problem 1:11 Solving the problem 2:12 Visualizing the tangential velocities 2:42 The direction of tangential velocity Multilingual? Please help translate Flipping Physics videos! Next Video: Tangential Acceleration Introduction with Example Problem  Mints on a Turntable Previous Video: Human Tangential Velocity Demonstration Please support me on Patreon! Thank you to Christopher Becke and Natasha Trousdale for being my Quality Control Team for this video. 
Video Discussion: Introductory Tangential Velocity Problem  Mints on a Turntable
Flipping Physics posted a topic in Video Discussions
Name: Introductory Tangential Velocity Problem  Mints on a Turntable Category: Rotational Motion Date Added: 20170808 Submitter: Flipping Physics Three mints are sitting 3.0 cm, 8.0 cm, and 13.0 cm from the center of a record player that is spinning at 45 revolutions per minute. What are the tangential velocities of each mint? Want Lecture Notes? This is an AP Physics 1 topic. Content Times: 0:08 Translating the problem 1:11 Solving the problem 2:12 Visualizing the tangential velocities 2:42 The direction of tangential velocity Multilingual? Please help translate Flipping Physics videos! Next Video: Tangential Acceleration Introduction with Example Problem  Mints on a Turntable Previous Video: Human Tangential Velocity Demonstration Please support me on Patreon! Thank you to Christopher Becke and Natasha Trousdale for being my Quality Control Team for this video. Introductory Tangential Velocity Problem  Mints on a Turntable 
Humans are best for demonstrating Tangential Velocity and understanding that it is not the same as angular velocity. Want Lecture Notes? This is an AP Physics 1 topic. Content Times: 0:10 Beginning the demonstration 1:19 Adding the last human 1:50 What was different for each human? 2:44 Visualizing tangential velocity using an aerial view Multilingual? Please help translate Flipping Physics videos! Next Video: Introductory Tangential Velocity Problem  Mints on a Turntable Previous Video: Introductory Uniformly Angularly Accelerated Motion Problem  A CD Player Please support me on Patreon! Thank you to Christopher Becke and Natasha Trousdale for being my Quality Control Team for this video.

 example
 demonstration
 (and 6 more)

Video Discussion: Human Tangential Velocity Demonstration
Flipping Physics posted a topic in Video Discussions
Name: Human Tangential Velocity Demonstration Category: Rotational Motion Date Added: 20170730 Submitter: Flipping Physics Humans are best for demonstrating Tangential Velocity and understanding that it is not the same as angular velocity. Want Lecture Notes? This is an AP Physics 1 topic. Content Times: 0:10 Beginning the demonstration 1:19 Adding the last human 1:50 What was different for each human? 2:44 Visualizing tangential velocity using an aerial view Multilingual? Please help translate Flipping Physics videos! Next Video: Introductory Tangential Velocity Problem  Mints on a Turntable Previous Video: Introductory Uniformly Angularly Accelerated Motion Problem  A CD Player Please support me on Patreon! Thank you to Christopher Becke and Natasha Trousdale for being my Quality Control Team for this video. Human Tangential Velocity Demonstration
 example
 demonstration
 (and 6 more)

Introductory Arc Length Problem  Gum on a Bike Tire
Flipping Physics posted a video in Rotational Motion
How far does a piece of gum stuck to the outside of a 67 cm diameter wheel travel while the wheel rotates through 149°? A conversion from revolutions to degrees is performed. Want Lecture Notes? This is an AP Physics 1 topic. Content Times: 0:11 Reading, visualizing, and translating the problem 1:22 Solving the problem 1:51 Converting from revolutions to radians 3:09 Measuring our answer Multilingual? Please help translate Flipping Physics videos! Next Video: Angular Velocity Introduction Previous Video: Defining Pi for Physics Please support me on Patreon! Thank you to Aarti Sangwan and Christopher Becke for being my Quality Control team for this video. 
Video Discussion: Introductory Arc Length Problem  Gum on a Bike Tire
Flipping Physics posted a topic in Video Discussions
Name: Introductory Arc Length Problem  Gum on a Bike Tire Category: Rotational Motion Date Added: 20170612 Submitter: Flipping Physics How far does a piece of gum stuck to the outside of a 67 cm diameter wheel travel while the wheel rotates through 149°? A conversion from revolutions to degrees is performed. Want Lecture Notes? This is an AP Physics 1 topic. Content Times: 0:11 Reading, visualizing, and translating the problem 1:22 Solving the problem 1:51 Converting from revolutions to radians 3:09 Measuring our answer Multilingual? Please help translate Flipping Physics videos! Next Video: Angular Velocity Introduction Previous Video: Defining Pi for Physics Please support me on Patreon! Thank you to Aarti Sangwan and Christopher Becke for being my Quality Control team for this video. Introductory Arc Length Problem  Gum on a Bike Tire 
Cartesian and polar coordinates are introduced and how to switch from one to the other is derived. The concept of angular displacement and arc length are demonstrated. Circumference is shown to be an arc length. Want Lecture Notes? This is an AP Physics 1 topic. Content Times: 0:10 Cartesian coordinates and circular motion 1:00 Polar coordinates and circular motion 1:40 Switching between polar and Cartesian coordinates 2:18 Introduction to Angular Displacement and Arc Length 3:24 The Arc Length equation 4:13 Circumference and Arc Length Multilingual? Please help translate Flipping Physics videos! Next Video: Defining Pi for Physics Previous Video: 2D Conservation of Momentum Example using Air Hockey Discs Please support me on Patreon! Thank you to Aarti Sangwan and Christopher Becke for being my Quality Control team for this video.

 arc length
 angular position
 (and 6 more)

Video Discussion: Introduction to Circular Motion and Arc Length
Flipping Physics posted a topic in Video Discussions
Name: Introduction to Circular Motion and Arc Length Category: Rotational Motion Date Added: 20170530 Submitter: Flipping Physics Cartesian and polar coordinates are introduced and how to switch from one to the other is derived. The concept of angular displacement and arc length are demonstrated. Circumference is shown to be an arc length. Want Lecture Notes? This is an AP Physics 1 topic. Content Times: 0:10 Cartesian coordinates and circular motion 1:00 Polar coordinates and circular motion 1:40 Switching between polar and Cartesian coordinates 2:18 Introduction to Angular Displacement and Arc Length 3:24 The Arc Length equation 4:13 Circumference and Arc Length Multilingual? Please help translate Flipping Physics videos! Next Video: Defining Pi for Physics Previous Video: 2D Conservation of Momentum Example using Air Hockey Discs Please support me on Patreon! Thank you to Aarti Sangwan and Christopher Becke for being my Quality Control team for this video. Introduction to Circular Motion and Arc Length
 arc length
 angular position
 (and 6 more)

AP Physics C: Rotational Kinematics Review (Mechanics)
Flipping Physics posted a video in Uniform Circular Motion
Calculus based review of instantaneous and average angular velocity and acceleration, uniformly angularly accelerated motion, arc length, the derivation of tangential velocity, the derivation of tangential acceleration, uniform circular motion, centripetal acceleration, centripetal force, nonuniform circular motion, and the derivation of the relationship between angular velocity and period. For the calculus based AP Physics C mechanics exam. Want Lecture Notes? Content Times: 0:10 Instantaneous and Average Angular Velocity and Acceleration 1:14 Uniformly Angularly Accelerated Motion 2:16 Arc Length 3:22 Tangential Velocity Derivation 4:29 Tangential Acceleration Derivation 6:03 Uniform Circular Motion and Centripetal Acceleration 8:04 Centripetal Force 9:20 NonUniform Circular Motion 10:21 Angular Velocity and Period Relationship Derivation Multilingual? Please help translate Flipping Physics videos! AP Physics C Review Website Next Video: AP Physics C: Rotational Dynamics Review  1 of 2 (Mechanics) Previous Video: AP Physics C: Momentum, Impulse, Collisions and Center of Mass Review (Mechanics) Please support me on Patreon! Thank you to Natasha Trousdale, Aarti Sangwan, and Jen Larson for being my Quality Control team for this video.
 centripetal acceleration
 centripetal
 (and 13 more)

Video Discussion: AP Physics C: Rotational Kinematics Review (Mechanics)
Flipping Physics posted a topic in AP Physics C
Name: AP Physics C: Rotational Kinematics Review (Mechanics) Category: Uniform Circular Motion Date Added: 20170409 Submitter: Flipping Physics Calculus based review of instantaneous and average angular velocity and acceleration, uniformly angularly accelerated motion, arc length, the derivation of tangential velocity, the derivation of tangential acceleration, uniform circular motion, centripetal acceleration, centripetal force, nonuniform circular motion, and the derivation of the relationship between angular velocity and period. For the calculus based AP Physics C mechanics exam. Want Lecture Notes? Content Times: 0:10 Instantaneous and Average Angular Velocity and Acceleration 1:14 Uniformly Angularly Accelerated Motion 2:16 Arc Length 3:22 Tangential Velocity Derivation 4:29 Tangential Acceleration Derivation 6:03 Uniform Circular Motion and Centripetal Acceleration 8:04 Centripetal Force 9:20 NonUniform Circular Motion 10:21 Angular Velocity and Period Relationship Derivation Multilingual? Please help translate Flipping Physics videos! AP Physics C Review Website Next Video: AP Physics C: Rotational Dynamics Review  1 of 2 (Mechanics) Previous Video: AP Physics C: Momentum, Impulse, Collisions and Center of Mass Review (Mechanics) Please support me on Patreon! Thank you to Natasha Trousdale, Aarti Sangwan, and Jen Larson for being my Quality Control team for this video. AP Physics C: Rotational Kinematics Review (Mechanics)
 centripetal acceleration
 centripetal
 (and 13 more)
Terms of Use
The pages of APlusPhysics.com, Physics in Action podcasts, and other online media at this site are made available as a service to physics students, instructors, and others. Their use is encouraged and is free of charge. Teachers who wish to use materials either in a classroom demonstration format or as part of an interactive activity/lesson are granted permission (and encouraged) to do so. Linking to information on this site is allowed and encouraged, but content from APlusPhysics may not be made available elsewhere on the Internet without the author's written permission.
Copyright Notice
APlusPhysics.com, Silly Beagle Productions and Physics In Action materials are copyright protected and the author restricts their use to online usage through a live internet connection. Any downloading of files to other storage devices (hard drives, web servers, school servers, CDs, etc.) with the exception of Physics In Action podcast episodes is prohibited. The use of images, text and animations in other projects (including nonprofit endeavors) is also prohibited. Requests for permission to use such material on other projects may be submitted in writing to info@aplusphysics.com. Licensing of the content of APlusPhysics.com for other uses may be considered in the future.