Search the Community

Showing results for tags 'potential energy'.



More search options

  • Search By Tags

    Type tags separated by commas.
  • Search By Author

Content Type


Forums

  • Physics News
    • Announcements
    • News Headlines
    • Physics In Action Podcast
  • General
    • Introductions
    • APlusPhysics Alumni
    • Site Suggestions & Help
    • Homework Help
    • Labs and Projects
    • Break Room
    • TV & Movie Physics
    • Video Discussions
    • STEM Discussion
  • Course Meeting Rooms
    • Honors and Regents Physics
    • AP Physics 1/2
    • AP Physics C

Categories

  • APlusPhysics Guides
  • Books
  • AP Physics 1/2
    • General / Other
    • Kinematics
    • Dynamics
    • UCM & Gravity
    • Impulse and Momentum
    • WEP
    • Rotational Motion
    • Oscillations
    • Fluids
    • Thermodynamics
    • Electrostatics
    • Circuits
    • Magnetism
    • Waves
    • Modern Physics
    • AP Exam Prep
  • AP Physics C
    • General / Other
    • Kinematics
    • Dynamics
    • WEP
    • Momentum & Impulse
    • Rotation
    • Gravitation
    • Oscillations
    • Electrostatics
    • Circuits
    • Magnetism
    • Induction
    • Exam Prep
  • Regents / Honors Physics
    • General / Other
    • Math Review
    • Kinematics
    • Dynamics
    • UCM & Gravity
    • Momentum & Impulse
    • Work, Energy, Power
    • Electricity
    • Magnetism
    • Waves
    • Modern Physics
    • Exam Prep
  • Simulations / Models

Blogs

  • TestUser's Blog
  • Physics in Flux
  • Mr. Powlin
  • Blog willorn
  • Blog awalts
  • Santa Claus is REAL!!!
  • Blog coltsfan
  • Blog rWing77IHS
  • Blog soccergirl
  • Blog hoopsgirl
  • Blog caffeinateddd
  • Blog Sbutler93
  • Blog PhysicsInAction
  • Blog bazinga
  • Blog WoWAngela
  • Blog probablykevin
  • Blog NewFoundGlory
  • Blog DANtheMAN
  • Blog Soccerboy2003D
  • Blog moe.ron
  • Blog challengerguy
  • Blog bxh8620
  • Blog darkassassin
  • Blog ohyeahphysics
  • Radio
  • Blog jade
  • North Salem High School AP-B Physics Blog
  • Blog landshark69
  • Blog Tiravin
  • Blog flipgirl
  • questioning everything
  • emma123321's Blog
  • Blog goNavy51
  • Blog MrPhysics
  • Sara T's Blog
  • hollyferg's Blog
  • theo12345's Blog
  • Blog lemonlime799
  • Stardust's Blog
  • Blog lacrosse12
  • Blog xcrunner92
  • Blog Bob Enright
  • Blog Swagmeister11
  • Blog ThatGuy
  • Blog Kapow
  • Blog Doctor Why
  • Blog [not]TheBrightestBulb
  • Blog Wunderkind5000
  • Blog daboss9
  • Blog OffInMyOwnWorld
  • Fg = (Fizzix)(Girl)
  • Blog 136861
  • Blog Albert Hawking
  • Blog gburkhart
  • Blog AldTay
  • Kat's corner
  • Danielle17's Blog
  • Mermaids Lagoon
  • RaRaRand
  • rtsully829's Blog
  • Patchy's Blog
  • skyblue22's Blog
  • dwarner's Blog
  • JBrown3's Blog
  • Christina H.'s Blog
  • Do cats always land on their feet?
  • LilBretz's Physics Blog
  • jay day
  • Blog smithr7
  • Blog keeth
  • PepperJack's Blog
  • jbilodeau's Blog
  • Blogging by Nathaniel
  • Physics Blog
  • leiser24's Blog
  • blog 1
  • Blog jmcpherson82
  • Blog HannahG
  • Blog AlphaGeek
  • Blog sarabuckbee
  • Blog mathgeek15
  • Yay physics!
  • Blog goalkeeper0
  • Blog lshads
  • Dodgeball
  • Blog caffeinefueledphysics
  • Blog midnightpanther
  • CMaggio's Blog
  • Blog bdavis
  • Blog MrMuffinMan
  • Blog denverbroncos
  • Blog DavidStack
  • Blog CharlieEckert
  • Blog SwagDragon15
  • Blog jfrachioni
  • Blog PostMeister
  • NevinO's Blog
  • José P's Blog
  • JDiddyInDaHouse's Blog
  • npignato's Blog
  • Above & Beyond
  • AndrewB's Blog
  • The Awesome Blog
  • Pineapple Grotto
  • physics blog
  • JamesWil's Blog
  • How does Iron Man fly?
  • KC12
  • Physics of Cheerleading
  • Elijah35's Blog
  • Physics?
  • Blog HannahG
  • mgiamartino's Blog
  • ericaplukas' Blog
  • as151701's Blog
  • Physics yeah!
  • TayCro
  • ACorb16's Blog
  • Patricks Blog with friends
  • Patricks Blog with friends
  • CM YAAAAAHHHHH
  • Ben's Post
  • Wise words from Leon Sandcastle
  • What Is A CT Scan
  • Physics Blog
  • Physics Of Videogames
  • ClarkK's Blog
  • Darts
  • Euclidean Blog
  • jfrachioni's Blog
  • Momentumous' Blog
  • goalkeeper0's Blog
  • The Blog of SCIENCE
  • physics on roller coasters
  • physics on swimming
  • physics on softball
  • physics on bike riding
  • The Real Blog, the Best Blog
  • RTB24's Blog
  • Physics!
  • PHYSICS courtesy of Shabba Ranks.
  • physicsguy#1
  • Walsherific Blogging!
  • Give me you're best shot fysics
  • Tired and a little dehydrated
  • bazinga818's Blog
  • TerminalVelociraptor
  • ThatBlogOverThere
  • Blog Having Nothing to do with Physics
  • Sarcasm And Some Physics Too
  • MarcelaDeVivo's Blog
  • martella6's Blog
  • Physics in the real world
  • abbyeschmitz's Blog
  • michaelford3's Blog
  • imani2014's Blog
  • kpluk3's Blog
  • hannahz's Blog
  • Celisse_R's Blog
  • Stephanie528's Blog
  • reedelena's Blog
  • Brittany16's Blog
  • OksanaZ's Blog
  • ihsseniorhill
  • Lynn152461's Blog
  • bailliexx13's Blog
  • hann129's Blog
  • Celeena's Blog
  • necharles17's Blog
  • Ben Shelton's Blog
  • cierraw's reflection on physics class
  • Amanda's Blog
  • Abbeys Blog
  • dspaker's Blog
  • Chanae's Blog
  • Halo Physics
  • Sandra's Blog
  • anna's Blog
  • SabrinaJV's Blog
  • kenzie10's Blog
  • hecht0520's Blog
  • DianeTorres' Blog
  • sputnam14
  • mitchell44's Blog
  • physics
  • happytoast's Blog
  • Basketball44
  • physics around us
  • Theo Cup
  • Merkel's Blog
  • claremannion's Blog
  • maddiejeanne15's Blog
  • Basketball Physics
  • PfFlyer17
  • jackbowes10's Blog
  • mt8397's Blog
  • zach_memmott11's Blog
  • emvan2's Blog
  • michaela1707's Blog
  • Faith DeMonte
  • Physics with Marisa
  • kenzie10's Blog
  • Kirch's Blog
  • theantonioj's Blog
  • Joe13's Blog
  • Zachary Denysenko's Blog
  • perrymoss' Blog
  • perrymoss' Blog
  • Celisse_R's Blog
  • Regents Physics
  • cyan1's Blog
  • Reflection on Physics Class (3rd quarter)
  • physicsgal1's Blog
  • cgl15's Blog
  • Beginner Blogger
  • Reflections on blogs
  • Fezziksphysics' Blog
  • Physics824
  • PhunPhysics's Blog
  • pinkblue2's Blog
  • aphysics15's Blog
  • kphysics15
  • GoArrows15's Blog
  • mphysics' Blog
  • physicsislife's Blog
  • A High Schooler's HP Blog
  • kphysics' Blog
  • dls715's Blog
  • Muchfungophysics!'s Blog
  • apfphysics15's Blog
  • Hot Dog! Is that science?!
  • purple15's Blog
  • sciencegirl123's Blog
  • atrestan15's Blog
  • Seriously, was there homework?
  • #Physicsislife
  • billnyethescienceguy's Blog
  • Novice Blogger
  • Science4Life's Blog
  • adeck15's Blog
  • physicsisawesome's Blog
  • Rules on How to Rule the Kingdom of Physics
  • Rules on How to Rule the Kingdom of Physics
  • Sam's Blogging Blog of Blogginess
  • ck's Blog
  • jack denial's blog
  • PhysX's Blog
  • jgalla's Blog
  • thisregistrationsucks' Blog
  • AP Physics C - The Final Frontier
  • Playground of the Mind with Dan
  • Mike V.'s Physics Blog
  • ariannatorpey's Blog
  • Michael783's Blog
  • Michael783's Blog
  • JessByrnes717's Blog
  • JessByrnes717's Blog
  • kmiller0212's Blog
  • The Kowalski Dimension
  • joshdeutsch's Blog
  • tuttutgoose's Blog
  • tuttutgoose's Blog
  • Kylee's Physics Blog
  • ItownEagl3's Blog
  • Elenarohr's Blog
  • james000345's Blog
  • Blogging Assignment
  • Lia's blog
  • KalB's Blog
  • NatalieB's Blog
  • kyraminchak12's Blog
  • t_hess10's Blog
  • Bootsy:)'s Blog
  • Ameliaâ„¢'s Blog
  • moritz.zoechling's Blog
  • Wibbly Wobbly Timey Wimey Physics
  • Hannah K's Blog:-)
  • That AP Physics C blog doe
  • Mandy's Blog
  • Quinn's Blog
  • jacmags' Blog
  • kelsey's Blog
  • Haley Fisher Blog
  • Jman612's Blog
  • A-Wil's Physics C Blog
  • morganism2.0's Blog
  • mdeng351's Blog
  • heather_heupel's Blog
  • CoreyK's Blog
  • isaacgagarinas' Blog
  • Mary_E27's Blog
  • zach_m's Blog
  • D Best Blog posts
  • Grace21's Blog
  • Grace21's Blog
  • ally_vanacker's Blog
  • natemoore10's Blog
  • The Physics (or lackthereof) of The Hobbit
  • Fee-oh-nuh's Blog
  • Physcics in eating food
  • ErikaRussell's Blog
  • Djwalker06's Blog
  • aschu103's Blog
  • Evan Plattens blog
  • danvan13's Blog
  • AnnieB's Blog
  • Jwt's Blog
  • aj31597's Blog
  • miranda15's Blog
  • miranda15's Blog
  • Monigle123's Blog
  • The Physics of a Slapshot
  • devon000885's Blog
  • devon000885's Blog
  • jakeb168 blog
  • physics of my life
  • Danny's Blog
  • Matts blog
  • Ryanz18's Blog
  • Ryanz18's Blog
  • Alyssa's Blog
  • Tuskee's Blog
  • Physics in Running!
  • konneroakes' Blog
  • B-Reezy64's Blog
  • WanidaK's Blog
  • Physics in falling
  • Physics in falling
  • Physics everywhere
  • The Race
  • NYC physics
  • JamesG's Blog
  • Megan's Blog
  • mikedangelo13's Blog
  • Z824's Blog
  • How Gwen Stacy Died (Physics Version)
  • Harrison's Blog
  • Kgraham30's Blog
  • Physics in the Modern World
  • jazmine2497's Blog
  • yoyo's Blog
  • Colby's Blog
  • Colby's Blog
  • All da Physics
  • Zmillz15's Blog
  • irennkluw's Blog
  • Walter Lewin
  • fminton20's Blog
  • Ryanz18's Blog
  • Ryanz18's Blog
  • Antonio Morales
  • PaperLand
  • stargazer14
  • Hannah's Blog
  • Just Some Thoughts on Physics
  • Nate's Blog
  • Anna's APC Blog
  • JesseLefler
  • A Diver's look at physics
  • Physic
  • IVIR GREAT's Physics
  • Physics Blog
  • Z's Blog
  • ZZ's Blog
  • Alpha Baker Gamma
  • Phyzx
  • a blog about physics
  • Ashley's Blog
  • Life
  • State of the Art Novel InFlowTech 1Gearturbine RotaryTurbo 2Imploturbocompressor One Compression Step
  • Nicole's Blog
  • Phys-X
  • Fun With Physics
  • Physics in the Real World
  • Physics and Video Games
  • Physics C and How it Relates to Me
  • My Life, Baseball and Physics
  • My Journey in Physics
  • CVs Blog
  • Blogs
  • Actual Physics from an Actual Physics Student
  • A Blog
  • World of Physics
  • Kayla's Blog
  • So, I guess I signed up for another year of ap physics...
  • Physics take two
  • Dissertation writing service
  • eclark
  • Physics of Video Games
  • An Physic
  • Paramount California University
  • Jeremy Walther
  • The Physics of Swimming
  • Physics Blog

Categories

  • Introductory Concepts
  • Kinematics
  • Dynamics
  • Momentum and Collisions
  • Circular Motion & Gravity
  • Rotational Motion
  • Work, Energy, Power
  • Oscillations
  • Fluid Mechanics
  • Thermodynamics
  • Electricity & Magnetism
  • Sound & Music
  • Waves
  • Optics
  • Modern Physics
  • Space
  • Sports & Recreation
  • Other
  • Regents / Honors Physics Tutorials
    • General
    • Kinematics
    • Dynamics
    • UCM & Gravity
    • Momentum Impulse & Collisions
    • Work Energy & Power
    • Electricity & Magnetism
    • Waves
    • Modern Physics
    • Exam Prep
  • AP-1/2 Physics Tutorials
    • General
    • Kinematics
    • Dynamics
    • Momentum
    • Rotational Motion
    • Work Energy & Power
    • UCM & Gravity
    • Oscillations
    • Fluids
    • Thermal Physics
    • Electrostatics
    • Circuits
    • Magnetism
    • Waves
    • Optics
    • Modern Physics
    • Exam Prep
  • AP-C Physics Tutorials
    • Vector Math
    • Kinematics
    • Dynamics
    • Work Energy & Power
    • Linear Momentum
    • Uniform Circular Motion
    • Rotation
    • Angular Momentum
    • Oscillations & Gravity
    • Electrostatics
    • Circuits
    • Magnetism
    • EM Induction
    • Exam Prep
  • Modeling and Simulation
  • Kerbal Space Program
  • Hewitt Drew-It!
    • Mechanics
    • Electricity & Magnetism
    • Properties of Matter
    • Fluids
    • Thermal Physics
    • Waves
    • Light
    • Modern Physics

Calendars

  • Community Calendar

Group


AIM


MSN


Website URL


ICQ


Yahoo


Jabber


Skype


Location


Interests


Biography


Location


Interests


Occupation

Found 16 results

  1. Name: AP Physics C: Universal Gravitation Review (Mechanics) Category: Circular Motion & Gravity Date Added: 2017-04-24 Submitter: Flipping Physics Calculus based review of Universal Gravitation including Newton’s Universal Law of Gravitation, solving for the acceleration due to gravity in a constant gravitational field, universal gravitational potential energy, graphing universal gravitational potential energy between an object and the Earth, three example problems (binding energy, escape velocity and orbital energy), and Kepler’s three laws. For the calculus based AP Physics C mechanics exam. Want Lecture Notes? Content Times: 0:10 Newton’s Universal Law of Gravitation 1:52 Solving for the acceleration due to gravity 2:02 Universal Gravitational Potential Energy 4:52 Graph of Universal Gravitational Potential Energy between an object and the Earth 6:09 Binding Energy Example Problem 8:22 Escape Velocity Example Problem 9:54 Orbital Energy Example Problem 12:29 Kepler’s Three Laws 12:54 Kepler’s First Law 14:56 Kepler’s Second Law 15:25 Deriving Kepler’s Third Law Multilingual? Please help translate Flipping Physics videos! AP Physics C Review Website Previous Video: AP Physics C: Rotational vs. Linear Review (Mechanics) Please support me on Patreon! Thank you to Aarti Sangwan, Sawdog, and Frank Geshwind for being my Quality Control team for this video. AP Physics C: Universal Gravitation Review (Mechanics)
  2. Calculus based review of Universal Gravitation including Newton’s Universal Law of Gravitation, solving for the acceleration due to gravity in a constant gravitational field, universal gravitational potential energy, graphing universal gravitational potential energy between an object and the Earth, three example problems (binding energy, escape velocity and orbital energy), and Kepler’s three laws. For the calculus based AP Physics C mechanics exam. Want Lecture Notes? Content Times: 0:10 Newton’s Universal Law of Gravitation 1:52 Solving for the acceleration due to gravity 2:02 Universal Gravitational Potential Energy 4:52 Graph of Universal Gravitational Potential Energy between an object and the Earth 6:09 Binding Energy Example Problem 8:22 Escape Velocity Example Problem 9:54 Orbital Energy Example Problem 12:29 Kepler’s Three Laws 12:54 Kepler’s First Law 14:56 Kepler’s Second Law 15:25 Deriving Kepler’s Third Law Multilingual? Please help translate Flipping Physics videos! AP Physics C Review Website Previous Video: AP Physics C: Rotational vs. Linear Review (Mechanics) Please support me on Patreon! Thank you to Aarti Sangwan, Sawdog, and Frank Geshwind for being my Quality Control team for this video.
  3. Name: AP Physics C: Work, Energy, and Power Review (Mechanics) Category: Work Energy & Power Date Added: 2017-03-23 Submitter: Flipping Physics Calculus based review of work done by constant and non-constant forces, Hooke’s Law, Work and Energy equations in isolated and non-isolated systems, kinetic energy, gravitational potential energy, elastic potential energy, conservative vs. nonconservative forces, conservation of mechanical energy, power, neutral, stable, and unstable equilibrium. For the calculus based AP Physics C mechanics exam. Want Lecture Notes? Content Times: 0:11 Work done by a constant force 2:25 Work done by a non-constant force 3:58 Force of a Spring (Hooke’s Law) 4:52 Calculating the work done by the force of a spring 6:26 Net work equals change in kinetic energy 7:02 Gravitational Potential Energy 7:50 Non-isolated systems work and energy 8:29 Isolated systems work and energy 9:02 Conservative vs. Nonconservative forces 10:10 Conservation of Mechanical Energy 10:45 Power 12:09 Every derivative can be an integral 13:00 Conservative forces and potential energy 13:46 Deriving Hooke’s Law from elastic potential energy 14:22 Deriving the force of gravity from gravitational potential energy 15:17 Neutral, stable, and unstable equilibrium Multilingual? Please help translate Flipping Physics videos! AP Physics C Review Website Previous Video: AP Physics C: Dynamics Review (Mechanics) Please support me on Patreon! Thank you to Aarti Sangwan for being my Quality Control help. AP Physics C: Work, Energy, and Power Review (Mechanics)
  4. Calculus based review of work done by constant and non-constant forces, Hooke’s Law, Work and Energy equations in isolated and non-isolated systems, kinetic energy, gravitational potential energy, elastic potential energy, conservative vs. nonconservative forces, conservation of mechanical energy, power, neutral, stable, and unstable equilibrium. For the calculus based AP Physics C mechanics exam. Want Lecture Notes? Content Times: 0:11 Work done by a constant force 2:25 Work done by a non-constant force 3:58 Force of a Spring (Hooke’s Law) 4:52 Calculating the work done by the force of a spring 6:26 Net work equals change in kinetic energy 7:02 Gravitational Potential Energy 7:50 Non-isolated systems work and energy 8:29 Isolated systems work and energy 9:02 Conservative vs. Nonconservative forces 10:10 Conservation of Mechanical Energy 10:45 Power 12:09 Every derivative can be an integral 13:00 Conservative forces and potential energy 13:46 Deriving Hooke’s Law from elastic potential energy 14:22 Deriving the force of gravity from gravitational potential energy 15:17 Neutral, stable, and unstable equilibrium Multilingual? Please help translate Flipping Physics videos! AP Physics C Review Website Next Video: AP Physics C: Integrals in Kinematics Review (Mechanics) Previous Video: AP Physics C: Dynamics Review (Mechanics) Please support me on Patreon! Thank you to Aarti Sangwan for being my Quality Control help.
  5. Name: Introductory Conservation of Mechanical Energy Problem using a Trebuchet Category: Work, Energy, Power Date Added: 2016-01-12 Submitter: Flipping Physics Learn how to use the Conservation of Mechanical Energy equation by solving a trebuchet problem. Want Lecture Notes? This is an AP Physics 1 topic. Content Times: 0:08 The problem 1:08 Why mechanical energy is conserved 1:37 Setting the zero line and initial and final points 2:32 The three types of mechanical energy 3:55 Canceling mechanical energies from the equation 4:54 Solving the equation 6:18 It’s final speed not final velocity 6:51 Why we can’t use the projectile motion equations 7:43 Do we really have to write all that down? Yes. Thank you to my students Will, Jacob, Natalie and Mery; my students who built and let me use their trebuchet! Next Video: Conservation of Energy Problem with Friction, an Incline and a Spring by Billy Multilingual? Please help translate Flipping Physics videos! Previous Video: Introduction to Elastic Potential Energy with Examples 1¢/minute Introductory Conservation of Mechanical Energy Problem using a Trebuchet
  6. Learn how to use the Conservation of Mechanical Energy equation by solving a trebuchet problem. Want Lecture Notes? This is an AP Physics 1 topic. Content Times: 0:08 The problem 1:08 Why mechanical energy is conserved 1:37 Setting the zero line and initial and final points 2:32 The three types of mechanical energy 3:55 Canceling mechanical energies from the equation 4:54 Solving the equation 6:18 It’s final speed not final velocity 6:51 Why we can’t use the projectile motion equations 7:43 Do we really have to write all that down? Yes. Thank you to my students Will, Jacob, Natalie and Mery; my students who built and let me use their trebuchet! Next Video: Conservation of Energy Problem with Friction, an Incline and a Spring by Billy Multilingual? Please help translate Flipping Physics videos! Previous Video: Introduction to Elastic Potential Energy with Examples 1¢/minute
  7. Name: Introduction to Conservation of Mechanical Energy with Demonstrations Category: Work, Energy, Power Date Added: 2015-12-18 Submitter: Flipping Physics Ian Terry, winner of Big Brother 14, makes a special appearance to help us learn about Conservation of Mechanical Energy. See several demonstrations and understand when mechanical energy is conserved. Want Lecture Notes? This is an AP Physics 1 topic. Content Times: 0:01 Reviewing the three different types of mechanical energy 0:23 Mr. Terry drops an object for our first demonstration 0:58 Calculating Kinetic Energy and Gravitational Potential Energy 2:53 Mechanical energy data table 3:37 Conservation of mechanical energy graph 5:10 When is mechanical energy conserved? 7:13 A second demonstration of conservation of mechanical energy Next Video: Introduction to Conservation of Mechanical Energy with Demonstrations Multilingual? Please help translate Flipping Physics videos! Previous Video: Introduction to Elastic Potential Energy with Examples 1¢/minute Introduction to Conservation of Mechanical Energy with Demonstrations
  8. Ian Terry, winner of Big Brother 14, makes a special appearance to help us learn about Conservation of Mechanical Energy. See several demonstrations and understand when mechanical energy is conserved. Want Lecture Notes? This is an AP Physics 1 topic. Content Times: 0:01 Reviewing the three different types of mechanical energy 0:23 Mr. Terry drops an object for our first demonstration 0:58 Calculating Kinetic Energy and Gravitational Potential Energy 2:53 Mechanical energy data table 3:37 Conservation of mechanical energy graph 5:10 When is mechanical energy conserved? 7:13 A second demonstration of conservation of mechanical energy Next Video: Introduction to Conservation of Mechanical Energy with Demonstrations Multilingual? Please help translate Flipping Physics videos! Previous Video: Introduction to Elastic Potential Energy with Examples 1¢/minute
  9. Name: Introduction to Elastic Potential Energy with Examples Category: Work, Energy, Power Date Added: 2016-11-03 Submitter: Flipping Physics Mr. Fullerton of APlusPhysics makes a guest appearance as a floating head to help us learn about Elastic Potential Energy. Several examples of objects which store elastic potential energy are shown and one example of stored elastic potential energy is calculated. Want Lecture Notes? This is an AP Physics 1 topic. Content Times: 0:01 Defining Elastic Potential Energy 1:38 The equation for Elastic Potential Energy 2:08 Defining the Spring Constant 3:27 Elastic Potential Energy stored in a rubber band (Mr. Fullerton’s entrance). 3:39 Showing equilibrium position (or rest position). 4:00 Determining the Spring Constant 4:55 Solving for Elastic Potential Energy 5:44 Solving for the units of Elastic Potential Energy 6:29 Can Elastic Potential Energy be negative? Next Video: Introduction to Conservation of Mechanical Energy with Demonstrations Multilingual? Please help translate Flipping Physics videos! Previous Video: Introduction to Gravitational Potential Energy with Zero Line Examples 1¢/minute Introduction to Elastic Potential Energy with Examples
  10. Mr. Fullerton of APlusPhysics makes a guest appearance as a floating head to help us learn about Elastic Potential Energy. Several examples of objects which store elastic potential energy are shown and one example of stored elastic potential energy is calculated. Want Lecture Notes? This is an AP Physics 1 topic. Content Times: 0:01 Defining Elastic Potential Energy 1:38 The equation for Elastic Potential Energy 2:08 Defining the Spring Constant 3:27 Elastic Potential Energy stored in a rubber band (Mr. Fullerton’s entrance). 3:39 Showing equilibrium position (or rest position). 4:00 Determining the Spring Constant 4:55 Solving for Elastic Potential Energy 5:44 Solving for the units of Elastic Potential Energy 6:29 Can Elastic Potential Energy be negative? Next Video: Introduction to Conservation of Mechanical Energy with Demonstrations Multilingual? Please help translate Flipping Physics videos! Previous Video: Introduction to Gravitational Potential Energy with Zero Line Examples 1¢/minute
  11. Name: Introduction to Gravitational Potential Energy with Zero Line Examples Category: Work, Energy, Power Date Added: 2015-12-07 Submitter: Flipping Physics Mini mr.p helps you learn about Gravitational Potential Energy with examples of different zero line locations. Want Lecture Notes? This is an AP Physics 1 topic. Content Times: 0:08 Defining Gravitational Potential Energy 1:37 Shrinking mr.p 2:09 Zero Line #1 2:47 Zero Line #2 3:25 Zero Line #3 4:41 Typical locations of the zero line 5:06 Determining the units for Gravitational Potential Energy Next Video: Introduction to Elastic Potential Energy with Examples Multilingual? Please help translate Flipping Physics videos! Previous Video: Introduction to Kinetic Energy with Example Problem 1¢/minute Introduction to Gravitational Potential Energy with Zero Line Examples
  12. Mini mr.p helps you learn about Gravitational Potential Energy with examples of different zero line locations. Want Lecture Notes? This is an AP Physics 1 topic. Content Times: 0:08 Defining Gravitational Potential Energy 1:37 Shrinking mr.p 2:09 Zero Line #1 2:47 Zero Line #2 3:25 Zero Line #3 4:41 Typical locations of the zero line 5:06 Determining the units for Gravitational Potential Energy Next Video: Introduction to Elastic Potential Energy with Examples Multilingual? Please help translate Flipping Physics videos! Previous Video: Introduction to Kinetic Energy with Example Problem 1¢/minute
  13. Name: AP Physics 1: Universal Gravitation Review Category: Exam Prep Date Added: 03 April 2015 - 03:42 PM Submitter: Flipping Physics Short Description: None Provided Review of the Universal Gravitation topics covered in the AP Physics 1 curriculum. Want View Video
  14. Review of the Universal Gravitation topics covered in the AP Physics 1 curriculum. Want [url="http://www.flippingphysics.com/ap1-gravitation-review.html"]Lecture Notes[/url]? Content Times: 0:14 Newton’s Universal Law of Gravitation 1:20 When to use the Two Force of Gravity equations 1:52 Solving for the acceleration due to gravity 2:45 Local and Global Gravitational Fields 3:34 Orbiting Satellite Example 5:03 Universal Gravitational Potential Energy 6:19 Why Universal Gravitational Potential Energy is less than or equal to zero 7:47 Must have two objects for gravitational potential energy Multilingual? [url="http://www.flippingphysics.com/translate.html"]Please help translate Flipping Physics videos![/url] Next Video: [url="http://www.flippingphysics.com/ap1-shm-review.html"]AP Physics 1: Simple Harmonic Motion Review[/url] Previous Video: [url="http://www.flippingphysics.com/ap1-rotational-kinematics-review.html"]AP Physics 1: Rotational Kinematics Review[/url] [url="http://www.flippingphysics.com/give.html"]1¢/minute[/url]
  15. In my last post I highlighted some of the incredible things that distance runners are able to do, including very long runs at altitude (lower oxygen) and in extreme conditions. But what allows these people to do these kinds of things? The short answer is training. With enough training almost anyone (for the most part excluding the very elderly) could finish an ultra marathon. But why is this? The answer lies in the fact that humans are better adapted to run for long distances than any other animal on the planet. First of all, humans are bipedal meaning that we move around on two feet, and while other primates are able to walk with two limbs humans are the only primates who walk exclusively with only two legs. Bipedalism in itself isn't incredibly unique as other mammals such as macropods (kangaroos, wallabies...) and large birds like ostriches and emus rely on bipedal movement as well, however humans have other adaptations to make bipedalism more efficient. You may not realize it but the human foot is a very intricate mechanical structure containing 26 bones, 33 joints and over 100 muscles and tendons. While running the foot, specifically the arch, acts as a spring which absorbs and returns force to the ground which is done as follows: the foot lands on the outside of the forefoot and pronates inward, stretching muscles which absorb and store force. The foot rocks forward while it pronates so that by the time the front pad of the foot is flat on the ground the toes are pushing off the ground with the energy stored in the foot's muscles. In addition to the feet the rest of the muscles act as springs which store energy from the foot strike to be used as propulsion for that step. As a result, running is basically a process of converting kinetic energy (foot strike) into potential energy (stretched muscles) and back into kinetic energy (push off). Of course as in any system, energy is lost as heat thus cells must break down glucose during anaerobic and aerobic respiration to create ATP for your muscles to use to create additional energy to put into the ground.
  16. Everyone likes trampolines. But how do they even work? It's all about energy, and at the same time, proves Newton's laws of motion. Potential energy (PE) and kinetic energy (KE) are the reason trampolines allow you to jump higher than you can on flat ground. One type of potential energy that is involved with trampolines is the potential energy stored in springs. Another type of energy is gravitational potential energy. There is also kinetic energy because you are moving. The equation that connects potential and kinetic energy to find total energy (E) is: E=PE+KE+Q The total energy of the person jumping on a trampoline equals all of the potential energy (both the spring and gravitational potential), plus the kinetic energy. Q is internal energy, which isn't really important here. Other equations needed to understand the forces and energy of trampolines are: PE=mgh This used to find the potential energy due to gravity. You multiply the mass of the object (or person in this case), by the height they are from the ground, by g, acceleration due to gravity. Which is always 9.81 m/s^2. People with larger masses have a greater potential energy due to gravity if they are at the same height as someone with a smaller mass. However, it is harder for people with larger masses to reach the same heights as people with small masses, because gravity is pulling them down more. PE=(1/2)kx^2 The potential energy stored in a spring: "x" is how much the spring stretches, and "k" is the spring constant. Hooke's law goes along with this: F=kx. The force of the spring is the constant multiplied by the change in the spring length. This demonstrates Newton's third law; every action has an equal and opposite reaction. When the springs are stretched by the person, they have to compress again, making the person jump higher as the trampoline returns to its original position. Because of gravity, larger masses allow the spring to be stretched out more. This can be shown by the equation F=ma, which is Newton's second law of motion. "F" is the force of gravity, "m" is mass, and "a" here is also g, acceleration due to gravity. So when mass increases, so does the force of gravity. This means the object/person is being pulled down harder by gravity. This stretches the springs of the trampoline more, creating a higher spring potential energy. But the mass is usually too heavy for the spring to move you if you just stand there, which is why you don't move unless you start jumping first. Smaller kids usually jump higher than adults, even though they have a lower potential energy due to gravity, because the trampoline can more easily spring them back up, since they are being pulled down by gravity slightly less. This is all a great example of Newton's first law: objects in motion will keep moving, and objects at rest will not move, until acted upon by an outside force. The outside forces that keep you on the trampoline are both gravity, which keeps you down, and the trampoline itself, which keeps you up. You also wont move until you begin jumping. Pushing your feet down makes you go up. (Newton's third law!)