Search the Community
Showing results for tags 'problem'.
Found 96 results

A horizontal spring is attached to a cord, the cord goes over a pulley, and a 0.025 kg mass is attached to the cord. If the spring is stretched by 0.045 m, what is the spring constant of the spring? Want Lecture Notes? This is an AP Physics 1 topic. Content Times: 0:07 Translating the problem 0:39 Solving the problem 2:26 Comparing to a vertical spring 3:30 Expansion vs. compression springs 3:56 The human spine acts like a compression spring Next Video: You Can't Run From Momentum! (a momentum introduction) Multilingual? Please help translate Flipping Physics videos! Previous Video: Determining the Spring Constant, k, with a Vertically Hanging Mass Please support me on Patreon! Thank you to Aarti Sangwan, Scott Carter, and Christopher Becke for being my Quality Control Team for this video. Thank you to Youssef Nasr for transcribing the English subtitles of this video.

 hookes law
 demonstration
 (and 9 more)

Video Discussion: The Human Spine acts like a Compression Spring
Flipping Physics posted a topic in Video Discussions
Name: The Human Spine acts like a Compression Spring Category: Oscillations Date Added: 20180402 Submitter: Flipping Physics A horizontal spring is attached to a cord, the cord goes over a pulley, and a 0.025 kg mass is attached to the cord. If the spring is stretched by 0.045 m, what is the spring constant of the spring? Want Lecture Notes? This is an AP Physics 1 topic. Content Times: 0:07 Translating the problem 0:39 Solving the problem 2:26 Comparing to a vertical spring 3:30 Expansion vs. compression springs 3:56 The human spine acts like a compression spring Next Video: You Can't Run From Momentum! (a momentum introduction) Multilingual? Please help translate Flipping Physics videos! Previous Video: Determining the Spring Constant, k, with a Vertically Hanging Mass Please support me on Patreon! Thank you to Aarti Sangwan, Scott Carter, and Christopher Becke for being my Quality Control Team for this video. Thank you to Youssef Nasr for transcribing the English subtitles of this video. The Human Spine acts like a Compression Spring
 hookes law
 demonstration
 (and 9 more)

Video Discussion: Determining the Spring Constant, k, with a Vertically Hanging Mass
Flipping Physics posted a topic in Video Discussions
Name: Determining the Spring Constant, k, with a Vertically Hanging Mass Category: Oscillations Date Added: 20180402 Submitter: Flipping Physics A vertically hanging spring with a natural length of 5.4 cm is extended to a length of 11.4 cm when 25 grams is suspended from it. What is the spring constant of the spring? Want Lecture Notes? This is an AP Physics 1 topic. Content Times: 0:08 Translating the problem 0:54 The free body diagram 1:53 Understanding the direction of the Spring Force 2:46 Summing the forces 3:32 Common misconception when using Hooke’s Law equation 5:00 Using the magnitude of the displacement from equilibrium Next Video: The Human Spine acts like a Compression Spring Multilingual? Please help translate Flipping Physics videos! Previous Video: Hooke's Law Introduction  Force of a Spring Please support me on Patreon! Thank you to Aarti Sangwan and Christopher Becke for being my Quality Control Team for this video. Thank you to Youssef Nasr for transcribing the English subtitles of this video. Determining the Spring Constant, k, with a Vertically Hanging Mass
 hookes law
 demonstrate
 (and 7 more)

Determining the Spring Constant, k, with a Vertically Hanging Mass
Flipping Physics posted a video in Oscillations
A vertically hanging spring with a natural length of 5.4 cm is extended to a length of 11.4 cm when 25 grams is suspended from it. What is the spring constant of the spring? Want Lecture Notes? This is an AP Physics 1 topic. Content Times: 0:08 Translating the problem 0:54 The free body diagram 1:53 Understanding the direction of the Spring Force 2:46 Summing the forces 3:32 Common misconception when using Hooke’s Law equation 5:00 Using the magnitude of the displacement from equilibrium Next Video: The Human Spine acts like a Compression Spring Multilingual? Please help translate Flipping Physics videos! Previous Video: Hooke's Law Introduction  Force of a Spring Please support me on Patreon! Thank you to Aarti Sangwan and Christopher Becke for being my Quality Control Team for this video. Thank you to Youssef Nasr for transcribing the English subtitles of this video.
 hookes law
 demonstrate
 (and 7 more)

AP Physics C: Universal Gravitation Review (Mechanics)
Flipping Physics posted a video in Oscillations & Gravity
Calculus based review of Universal Gravitation including Newton’s Universal Law of Gravitation, solving for the acceleration due to gravity in a constant gravitational field, universal gravitational potential energy, graphing universal gravitational potential energy between an object and the Earth, three example problems (binding energy, escape velocity and orbital energy), and Kepler’s three laws. For the calculus based AP Physics C mechanics exam. Want Lecture Notes? At 6:01 this video addresses an error in the Universal Gravitational Potential Energy Graph from the video's previous iteration. Content Times: 0:10 Newton’s Universal Law of Gravitation 1:52 Solving for the acceleration due to gravity 2:02 Universal Gravitational Potential Energy 4:52 Graph of Universal Gravitational Potential Energy between an object and the Earth 6:01 Correcting the Universal Gravitational Potential Energy Graph 7:30 Binding Energy Example Problem 9:41 Escape Velocity Example Problem 11:19 Orbital Energy Example Problem 13:52 Kepler’s Three Laws 14:17 Kepler’s First Law 16:19 Kepler’s Second Law 16:42 Deriving Kepler’s Third Law Multilingual? Please help translate Flipping Physics videos! AP Physics C Review Website Next Video: AP Physics C: Simple Harmonic Motion Review (Mechanics) Previous Video: AP Physics C: Rotational vs. Linear Review (Mechanics) Please support me on Patreon! Thank you to Aarti Sangwan, Sawdog, and Frank Geshwind for being my Quality Control team for this video.
 universal gravitation
 newtons universal law of gravitation
 (and 21 more)

A conical pendulum is demonstrated and it’s angular velocity is determined. Want Lecture Notes? This is an AP Physics 1 topic. Content Times: 0:08 Translating the problem 0:54 Illustrating how this is a conical pendulum 1:25 Drawing the free body diagram 2:50 Breaking the force of tension into its components 3:53 Summing the forces in the ydirection 4:34 Summing the forces in the indirection 5:25 Solving for the radius 7:23 Determining the angular direction 8:02 Comparing our answer to the demonstration 8:51 The Physics Works! Next Video: Newton's Universal Law of Gravitation Introduction (The Big G Equation) Multilingual? Please help translate Flipping Physics videos! Previous Video: The Right Hand Rule for Angular Velocity and Angular Displacement Please support me on Patreon! Thank you to Scott Carter and Christopher Becke for being my Quality Control Team for this video.

 angular velocity
 right hand rule
 (and 4 more)

Video Discussion: Conical Pendulum Demonstration and Problem
Flipping Physics posted a topic in Video Discussions
Name: Conical Pendulum Demonstration and Problem Category: Rotational Motion Date Added: 20171112 Submitter: Flipping Physics A conical pendulum is demonstrated and it’s angular velocity is determined. Want Lecture Notes? This is an AP Physics 1 topic. Content Times: 0:08 Translating the problem 0:54 Illustrating how this is a conical pendulum 1:25 Drawing the free body diagram 2:50 Breaking the force of tension into its components 3:53 Summing the forces in the ydirection 4:34 Summing the forces in the indirection 5:25 Solving for the radius 7:23 Determining the angular direction 8:02 Comparing our answer to the demonstration 8:51 The Physics Works! Next Video: Newton's Universal Law of Gravitation Introduction (The Big G Equation) Multilingual? Please help translate Flipping Physics videos! Previous Video: The Right Hand Rule for Angular Velocity and Angular Displacement Please support me on Patreon! Thank you to Scott Carter and Christopher Becke for being my Quality Control Team for this video. Conical Pendulum Demonstration and Problem
 angular velocity
 right hand rule
 (and 4 more)

Determining the Force Normal on a Toy Car moving up a Curved Hill
Flipping Physics posted a video in Rotational Motion
A 0.453 kg toy car moving at 1.15 m/s is going up a semicircular hill with a radius of 0.89 m. When the hill makes an angle of 32° with the horizontal, what is the magnitude of the force normal on the car? Want Lecture Notes? This is an AP Physics 1 topic. Content Times: 0:08: Translating the problem 1:01 Clarifying the angle 1:51 Drawing the free body diagram 3:20 Summing the forces 4:22 How the tangential velocity and force normal change Next Video: Demonstrating Why Water Stays in a Bucket Revolving in a Vertical Circle Multilingual? Please help translate Flipping Physics videos! Previous Video: Mints on a Rotating Turntable  Determining the Static Coefficient of Friction Please support me on Patreon! Thank you to Aarti Sangwan, Scott Carter, and Christopher Becke for being my Quality Control Team for this video. 
Video Discussion: Determining the Force Normal on a Toy Car moving up a Curved Hill
Flipping Physics posted a topic in Video Discussions
Name: Determining the Force Normal on a Toy Car moving up a Curved Hill Category: Rotational Motion Date Added: 20171008 Submitter: Flipping Physics A 0.453 kg toy car moving at 1.15 m/s is going up a semicircular hill with a radius of 0.89 m. When the hill makes an angle of 32° with the horizontal, what is the magnitude of the force normal on the car? Want Lecture Notes? This is an AP Physics 1 topic. Content Times: 0:08: Translating the problem 1:01 Clarifying the angle 1:51 Drawing the free body diagram 3:20 Summing the forces 4:22 How the tangential velocity and force normal change Next Video: Demonstrating Why Water Stays in a Bucket Revolving in a Vertical Circle Multilingual? Please help translate Flipping Physics videos! Previous Video: Mints on a Rotating Turntable  Determining the Static Coefficient of Friction Please support me on Patreon! Thank you to Aarti Sangwan, Scott Carter, and Christopher Becke for being my Quality Control Team for this video. Determining the Force Normal on a Toy Car moving up a Curved Hill 
What is the Maximum Speed of a Car at the Top of a Hill?
Flipping Physics posted a video in Rotational Motion
What is the maximum linear speed a car can move over the top of a semicircular hill without its tires lifting off the ground? The radius of the hill is 1.8 meters. Want Lecture Notes? This is an AP Physics 1 topic. Content Times: 0:08 Translating the problem 0:42 Drawing the free body diagram and summing the forces 1:45 Why the force normal is zero in this situation 2:26 Finishing the problem Next Video: Determining the Force Normal on a Toy Car moving up a Curved Hill Multilingual? Please help translate Flipping Physics videos! Previous Video: Introductory Centripetal Force Problem  Car over a Hill Please support me on Patreon! Thank you to Scott Carter and Christopher Becke for being my Quality Control Team for this video.
 car
 force normal
 (and 9 more)

Video Discussion: What is the Maximum Speed of a Car at the Top of a Hill?
Flipping Physics posted a topic in Video Discussions
Name: What is the Maximum Speed of a Car at the Top of a Hill? Category: Rotational Motion Date Added: 20171002 Submitter: Flipping Physics What is the maximum linear speed a car can move over the top of a semicircular hill without its tires lifting off the ground? The radius of the hill is 1.8 meters. Want Lecture Notes? This is an AP Physics 1 topic. Content Times: 0:08 Translating the problem 0:42 Drawing the free body diagram and summing the forces 1:45 Why the force normal is zero in this situation 2:26 Finishing the problem Next Video: Determining the Force Normal on a Toy Car moving up a Curved Hill Multilingual? Please help translate Flipping Physics videos! Previous Video: Introductory Centripetal Force Problem  Car over a Hill Please support me on Patreon! Thank you to Scott Carter and Christopher Becke for being my Quality Control Team for this video. What is the Maximum Speed of a Car at the Top of a Hill?
 car
 force normal
 (and 9 more)

Introductory Centripetal Force Problem  Car over a Hill
Flipping Physics posted a video in Rotational Motion
A 453 g toy car moving at 1.05 m/s is going over a semicircular hill with a radius of 1.8 m. When the car is at the top of the hill, what is the magnitude of the force from the ground on the car? Want Lecture Notes? This is an AP Physics 1 topic. Content Times: 0:08 Translating the problem 1:49 Drawing the free body diagram 2:43 We need to sum the forces in the indirection 3:22 The “indirection” is positive. The “outdirection” is negative 4:06 Identifying the centripetal force in this problem 4:54 Solving the problem … finally. 6:15 Kit compares the magnitudes of the force normal and force of gravity Thank you to Kit from Gorilla Physics for your help with this video!! Next Video: What is the Maximum Speed of a Car at the Top of a Hill? Multilingual? Please help translate Flipping Physics videos! Previous Video: Centripetal Force Introduction and Demonstration Please support me on Patreon! Thank you to Scott Carter and Christopher Becke for being my Quality Control Team for this video.
 car
 force normal
 (and 8 more)

Video Discussion: Introductory Centripetal Force Problem  Car over a Hill
Flipping Physics posted a topic in Video Discussions
Name: Introductory Centripetal Force Problem  Car over a Hill Category: Rotational Motion Date Added: 20170918 Submitter: Flipping Physics A 453 g toy car moving at 1.05 m/s is going over a semicircular hill with a radius of 1.8 m. When the car is at the top of the hill, what is the magnitude of the force from the ground on the car? Want Lecture Notes? This is an AP Physics 1 topic. Content Times: 0:08 Translating the problem 1:49 Drawing the free body diagram 2:43 We need to sum the forces in the indirection 3:22 The “indirection” is positive. The “outdirection” is negative 4:06 Identifying the centripetal force in this problem 4:54 Solving the problem … finally. 6:15 Kit compares the magnitudes of the force normal and force of gravity Thank you to Kit from Gorilla Physics for your help with this video!! Next Video: What is the Maximum Speed of a Car at the Top of a Hill? Multilingual? Please help translate Flipping Physics videos! Previous Video: Centripetal Force Introduction and Demonstration Please support me on Patreon! Thank you to Scott Carter and Christopher Becke for being my Quality Control Team for this video. Introductory Centripetal Force Problem  Car over a Hill
 car
 force normal
 (and 8 more)

Tangential Acceleration Introduction with Example Problem  Mints on a Turntable
Flipping Physics posted a video in Rotational Motion
Tangential Acceleration is introduced and visualized. Example problem is worked through. We even relate arc length, tangential velocity, and tangential acceleration via the derivative! Example: A record player is plugged in and uniformly accelerates to 45 revolutions per minute in 0.85 seconds. Mints are located 3.0 cm, 8.0 cm, and 13.0 cm from the center of the record. What is the magnitude of the tangential acceleration of each mint? Want Lecture Notes? This is an AP Physics 1 topic. Content Times: 0:21 The tangential acceleration equation 0:55 Translating the example problem 2:13 Solving for angular acceleration 3:02 Solving for tangential accelerations 4:16 Visualizing the tangential accelerations 5:05 Using the derivative to relate arc length, tangential velocity, and tangential acceleration Multilingual? Please help translate Flipping Physics videos! Next Video: Demonstrating the Directions of Tangential Velocity and Acceleration Previous Video: Introductory Tangential Velocity Problem  Mints on a Turntable Please support me on Patreon! Thank you to Christopher Becke and Natasha Trousdale for being my Quality Control Team for this video.
 record
 derivative
 (and 8 more)

Video Discussion: Tangential Acceleration Introduction with Example Problem  Mints on a Turntable
Flipping Physics posted a topic in Video Discussions
Name: Tangential Acceleration Introduction with Example Problem  Mints on a Turntable Category: Rotational Motion Date Added: 20170813 Submitter: Flipping Physics Tangential Acceleration is introduced and visualized. Example problem is worked through. We even relate arc length, tangential velocity, and tangential acceleration via the derivative! Example: A record player is plugged in and uniformly accelerates to 45 revolutions per minute in 0.85 seconds. Mints are located 3.0 cm, 8.0 cm, and 13.0 cm from the center of the record. What is the magnitude of the tangential acceleration of each mint? Want Lecture Notes? This is an AP Physics 1 topic. Content Times: 0:21 The tangential acceleration equation 0:55 Translating the example problem 2:13 Solving for angular acceleration 3:02 Solving for tangential accelerations 4:16 Visualizing the tangential accelerations 5:05 Using the derivative to relate arc length, tangential velocity, and tangential acceleration Multilingual? Please help translate Flipping Physics videos! Next Video: Demonstrating the Directions of Tangential Velocity and Acceleration Previous Video: Introductory Tangential Velocity Problem  Mints on a Turntable Please support me on Patreon! Thank you to Christopher Becke and Natasha Trousdale for being my Quality Control Team for this video. Tangential Acceleration Introduction with Example Problem  Mints on a Turntable
 record
 derivative
 (and 8 more)

Introductory Tangential Velocity Problem  Mints on a Turntable
Flipping Physics posted a video in Rotational Motion
Three mints are sitting 3.0 cm, 8.0 cm, and 13.0 cm from the center of a record player that is spinning at 45 revolutions per minute. What are the tangential velocities of each mint? Want Lecture Notes? This is an AP Physics 1 topic. Content Times: 0:08 Translating the problem 1:11 Solving the problem 2:12 Visualizing the tangential velocities 2:42 The direction of tangential velocity Multilingual? Please help translate Flipping Physics videos! Next Video: Tangential Acceleration Introduction with Example Problem  Mints on a Turntable Previous Video: Human Tangential Velocity Demonstration Please support me on Patreon! Thank you to Christopher Becke and Natasha Trousdale for being my Quality Control Team for this video. 
Video Discussion: Introductory Tangential Velocity Problem  Mints on a Turntable
Flipping Physics posted a topic in Video Discussions
Name: Introductory Tangential Velocity Problem  Mints on a Turntable Category: Rotational Motion Date Added: 20170808 Submitter: Flipping Physics Three mints are sitting 3.0 cm, 8.0 cm, and 13.0 cm from the center of a record player that is spinning at 45 revolutions per minute. What are the tangential velocities of each mint? Want Lecture Notes? This is an AP Physics 1 topic. Content Times: 0:08 Translating the problem 1:11 Solving the problem 2:12 Visualizing the tangential velocities 2:42 The direction of tangential velocity Multilingual? Please help translate Flipping Physics videos! Next Video: Tangential Acceleration Introduction with Example Problem  Mints on a Turntable Previous Video: Human Tangential Velocity Demonstration Please support me on Patreon! Thank you to Christopher Becke and Natasha Trousdale for being my Quality Control Team for this video. Introductory Tangential Velocity Problem  Mints on a Turntable 
Introductory Uniformly Angularly Accelerated Motion Problem  A CD Player
Flipping Physics posted a video in Rotational Motion
What is the angular acceleration of a compact disc that turns through 3.25 revolutions while it uniformly slows to a stop in 2.27 seconds? Want Lecture Notes? This is an AP Physics 1 topic. Content Times: 0:08 Translating the problem 0:52 Determining which Uniformly Angularly Accelerated Motion (UαM) equation to use 1:54 Using a second UαM equation Multilingual? Please help translate Flipping Physics videos! Next Video: Human Tangential Velocity Demonstration Previous Video: Uniformly Angularly Accelerated Motion Introduction Please support me on Patreon! Thank you to Christopher Becke for being my Quality Control Team for this video.
 demonstration
 angularly
 (and 3 more)

Video Discussion: Introductory Uniformly Angularly Accelerated Motion Problem  A CD Player
Flipping Physics posted a topic in Video Discussions
Name: Introductory Uniformly Angularly Accelerated Motion Problem  A CD Player Category: Rotational Motion Date Added: 20170723 Submitter: Flipping Physics What is the angular acceleration of a compact disc that turns through 3.25 revolutions while it uniformly slows to a stop in 2.27 seconds? Want Lecture Notes? This is an AP Physics 1 topic. Content Times: 0:08 Translating the problem 0:52 Determining which Uniformly Angularly Accelerated Motion (UαM) equation to use 1:54 Using a second UαM equation Multilingual? Please help translate Flipping Physics videos! Next Video: Human Tangential Velocity Demonstration Previous Video: Uniformly Angularly Accelerated Motion Introduction Please support me on Patreon! Thank you to Christopher Becke for being my Quality Control Team for this video. Introductory Uniformly Angularly Accelerated Motion Problem  A CD Player
 demonstration
 angularly
 (and 3 more)

A record player is plugged in, uniformly accelerates to 45 revolutions per minute, and then is unplugged. The record player (a) takes 0.85 seconds to get up to speed, (b) spends 3.37 seconds at 45 rpms, and then (c) takes 2.32 seconds to slow down to a stop. What is the average angular acceleration of the record player during all three parts? Want Lecture Notes? This is an AP Physics 1 topic. Content Times: 0:08 Translating the problem 2:35 Solving part (a)  angular acceleration while speeding up 3:13 Solving part (b)  angular acceleration at a constant angular velocity 3:57 Solving part (c)  angular acceleration while slowing down 4:36 Reflecting on all 3 parts simultaneously Multilingual? Please help translate Flipping Physics videos! Next Video: Uniformly Angularly Accelerated Motion Introduction Previous Video: Angular Acceleration Introduction Please support me on Patreon! Thank you to Aarti Sangwan, Scott Carter, and Christopher Becke for being my Quality Control team for this video.

 average
 acceleration
 (and 11 more)

Video Discussion: Angular Accelerations of a Record Player
Flipping Physics posted a topic in Video Discussions
Name: Angular Accelerations of a Record Player Category: Rotational Motion Date Added: 20170711 Submitter: Flipping Physics A record player is plugged in, uniformly accelerates to 45 revolutions per minute, and then is unplugged. The record player (a) takes 0.85 seconds to get up to speed, (b) spends 3.37 seconds at 45 rpms, and then (c) takes 2.32 seconds to slow down to a stop. What is the average angular acceleration of the record player during all three parts? Want Lecture Notes? This is an AP Physics 1 topic. Content Times: 0:08 Translating the problem 2:35 Solving part (a)  angular acceleration while speeding up 3:13 Solving part (b)  angular acceleration at a constant angular velocity 3:57 Solving part (c)  angular acceleration while slowing down 4:36 Reflecting on all 3 parts simultaneously Multilingual? Please help translate Flipping Physics videos! Next Video: Uniformly Angularly Accelerated Motion Introduction Previous Video: Angular Acceleration Introduction Please support me on Patreon! Thank you to Aarti Sangwan, Scott Carter, and Christopher Becke for being my Quality Control team for this video. Angular Accelerations of a Record Player
 average
 acceleration
 (and 11 more)

Introductory Angular Velocity Problem  A Turning Bike Tire
Flipping Physics posted a video in Rotational Motion
The wheel of a bike rotates exactly 3 times in 12.2 seconds. What is the average angular velocity of the wheel in (a) radians per second and (b) revolutions per minute? Want Lecture Notes? This is an AP Physics 1 topic. Content Times: 0:08 Translating the problem 1:32 Solving for the angular velocity in radians per second 2:22 Converting from radians per second to revolutions per minute 3:24 Three common mistakes made by students when doing this conversion. 4:37 Alternate and easier solution for part b Multilingual? Please help translate Flipping Physics videos! Next Video: Angular Acceleration Introduction Previous Video: Angular Velocity Introduction Please support me on Patreon! Thank you to Scott Carter and Christopher Becke for being my Quality Control team for this video. 
Video Discussion: Introductory Angular Velocity Problem  A Turning Bike Tire
Flipping Physics posted a topic in Video Discussions
Name: Introductory Angular Velocity Problem  A Turning Bike Tire Category: Rotational Motion Date Added: 20170626 Submitter: Flipping Physics The wheel of a bike rotates exactly 3 times in 12.2 seconds. What is the average angular velocity of the wheel in (a) radians per second and (b) revolutions per minute? Want Lecture Notes? This is an AP Physics 1 topic. Content Times: 0:08 Translating the problem 1:32 Solving for the angular velocity in radians per second 2:22 Converting from radians per second to revolutions per minute 3:24 Three common mistakes made by students when doing this conversion. 4:37 Alternate and easier solution for part b Multilingual? Please help translate Flipping Physics videos! Next Video: Angular Acceleration Introduction Previous Video: Angular Velocity Introduction Please support me on Patreon! Thank you to Scott Carter and Christopher Becke for being my Quality Control team for this video. Introductory Angular Velocity Problem  A Turning Bike Tire 
Introductory Arc Length Problem  Gum on a Bike Tire
Flipping Physics posted a video in Rotational Motion
How far does a piece of gum stuck to the outside of a 67 cm diameter wheel travel while the wheel rotates through 149°? A conversion from revolutions to degrees is performed. Want Lecture Notes? This is an AP Physics 1 topic. Content Times: 0:11 Reading, visualizing, and translating the problem 1:22 Solving the problem 1:51 Converting from revolutions to radians 3:09 Measuring our answer Multilingual? Please help translate Flipping Physics videos! Next Video: Angular Velocity Introduction Previous Video: Defining Pi for Physics Please support me on Patreon! Thank you to Aarti Sangwan and Christopher Becke for being my Quality Control team for this video. 
Video Discussion: Introductory Arc Length Problem  Gum on a Bike Tire
Flipping Physics posted a topic in Video Discussions
Name: Introductory Arc Length Problem  Gum on a Bike Tire Category: Rotational Motion Date Added: 20170612 Submitter: Flipping Physics How far does a piece of gum stuck to the outside of a 67 cm diameter wheel travel while the wheel rotates through 149°? A conversion from revolutions to degrees is performed. Want Lecture Notes? This is an AP Physics 1 topic. Content Times: 0:11 Reading, visualizing, and translating the problem 1:22 Solving the problem 1:51 Converting from revolutions to radians 3:09 Measuring our answer Multilingual? Please help translate Flipping Physics videos! Next Video: Angular Velocity Introduction Previous Video: Defining Pi for Physics Please support me on Patreon! Thank you to Aarti Sangwan and Christopher Becke for being my Quality Control team for this video. Introductory Arc Length Problem  Gum on a Bike Tire
Terms of Use
The pages of APlusPhysics.com, Physics in Action podcasts, and other online media at this site are made available as a service to physics students, instructors, and others. Their use is encouraged and is free of charge. Teachers who wish to use materials either in a classroom demonstration format or as part of an interactive activity/lesson are granted permission (and encouraged) to do so. Linking to information on this site is allowed and encouraged, but content from APlusPhysics may not be made available elsewhere on the Internet without the author's written permission.
Copyright Notice
APlusPhysics.com, Silly Beagle Productions and Physics In Action materials are copyright protected and the author restricts their use to online usage through a live internet connection. Any downloading of files to other storage devices (hard drives, web servers, school servers, CDs, etc.) with the exception of Physics In Action podcast episodes is prohibited. The use of images, text and animations in other projects (including nonprofit endeavors) is also prohibited. Requests for permission to use such material on other projects may be submitted in writing to info@aplusphysics.com. Licensing of the content of APlusPhysics.com for other uses may be considered in the future.