Search the Community
Showing results for tags 'static'.
Found 21 results

Calculus based review of Newton’s three laws, basic forces in dynamics such as the force of gravity, force normal, force of tension, force applied, force of friction, free body diagrams, translational equilibrium, the drag or resistive force and terminal velocity. For the calculus based AP Physics C mechanics exam. Want Lecture Notes? Content Times: 0:18 Newton’s First Law 1:30 Newton’s Second Law 1:55 Newton’s Third Law 2:29 Force of Gravity 3:36 Force Normal 3:58 Force of Tension 4:24 Force Applied 4:33 Force of Friction 5:46 Static Friction 6:17 Kinetic Friction 6:33 The Coefficient of Friction 7:26 Free Body Diagrams 10:41 Translational equilibrium 11:41 Drag Force or Resistive Force 13:25 Terminal Velocity Next Video: AP Physics C: Work, Energy, and Power Review (Mechanics) Multilingual? Please help translate Flipping Physics videos! AP Physics C Review Website Previous Video: AP Physics C: Kinematics Review (Mechanics) Please support me on Patreon! Thank you to Aarti Sangwan for being my Quality Control help.

 drag
 translational
 (and 19 more)

Video Discussion: AP Physics C: Dynamics Review (Mechanics)
Flipping Physics posted a topic in AP Physics C
Name: AP Physics C: Dynamics Review (Mechanics) Category: Dynamics Date Added: 20170323 Submitter: Flipping Physics Calculus based review of Newton’s three laws, basic forces in dynamics such as the force of gravity, force normal, force of tension, force applied, force of friction, free body diagrams, translational equilibrium, the drag or resistive force and terminal velocity. For the calculus based AP Physics C mechanics exam. Want Lecture Notes? Content Times: 0:18 Newton’s First Law 1:30 Newton’s Second Law 1:55 Newton’s Third Law 2:29 Force of Gravity 3:36 Force Normal 3:58 Force of Tension 4:24 Force Applied 4:33 Force of Friction 5:46 Static Friction 6:17 Kinetic Friction 6:33 The Coefficient of Friction 7:26 Free Body Diagrams 10:41 Translational equilibrium 11:41 Drag Force or Resistive Force 13:25 Terminal Velocity Next Video: AP Physics C: Work, Energy, and Power Review (Mechanics) Multilingual? Please help translate Flipping Physics videos! AP Physics C Review Website Previous Video: AP Physics C: Kinematics Review (Mechanics) Please support me on Patreon! Thank you to Aarti Sangwan for being my Quality Control help. AP Physics C: Dynamics Review (Mechanics)
 drag
 translational
 (and 19 more)

Video Discussion: Do Antilock Brakes use Static or Kinetic Friction? by Billy
Flipping Physics posted a topic in Video Discussions
Name: Do Antilock Brakes use Static or Kinetic Friction? by Billy Category: Dynamics Date Added: 20160630 Submitter: Flipping Physics Billy analyzes ABS brakes to show the difference between Rolling without Slipping and Rolling with Slipping. He also answers the question in the title of the video, but why would I write that in the description? Want Lecture Notes? This is an AP Physics 1 Topic. Content Times: 0:17 ABS Brakes 0:40 Demonstrating Rolling without Slipping and Rolling with Slipping 1:36 How ABS Brakes work 2:18 Analyzing a car tire 3:34 The calculations Next Video: Everybody Brought Mass to the Party! Multilingual? Please help translate Flipping Physics videos! Previous Video: Does the Book Move? An Introductory Friction Problem Please support me on Patreon! Do Antilock Brakes use Static or Kinetic Friction? by Billy 
Do Antilock Brakes use Static or Kinetic Friction? by Billy
Flipping Physics posted a video in Dynamics
Billy analyzes ABS brakes to show the difference between Rolling without Slipping and Rolling with Slipping. He also answers the question in the title of the video, but why would I write that in the description? Want Lecture Notes? This is an AP Physics 1 Topic. Content Times: 0:17 ABS Brakes 0:40 Demonstrating Rolling without Slipping and Rolling with Slipping 1:36 How ABS Brakes work 2:18 Analyzing a car tire 3:34 The calculations Next Video: Everybody Brought Mass to the Party! Multilingual? Please help translate Flipping Physics videos! Previous Video: Does the Book Move? An Introductory Friction Problem Please support me on Patreon! 
A book is resting on a board. One end of the board is slowly raised. The book starts to slide when the incline angle is 15°. What is the coefficient of static friction between the book and the incline? Want Lecture Notes? This is an AP Physics 1 Topic. Content Times: 0:01 The example 0:44 Drawing the free body diagram 1:41 Net force in the parallel direction 2:11 Demonstrating why the acceleration in the parallel direction is zero 3:58 Force normal does not equal force of gravity 4:32 Net force in the perpendicular direction 5:07 Return to the parallel direction 6:06 Substituting in numbers Next Video: Calculating the Uncertainty of the Coefficient of Friction Multilingual? Please help translate Flipping Physics videos! Previous Video: Physics "Magic Trick" on an Incline Please support me on Patreon!

Video Discussion: Introductory Static Friction on an Incline Problem
Flipping Physics posted a topic in Video Discussions
Name: Introductory Static Friction on an Incline Problem Category: Dynamics Date Added: 20160613 Submitter: Flipping Physics A book is resting on a board. One end of the board is slowly raised. The book starts to slide when the incline angle is 15°. What is the coefficient of static friction between the book and the incline? Want Lecture Notes? This is an AP Physics 1 Topic. Content Times: 0:01 The example 0:44 Drawing the free body diagram 1:41 Net force in the parallel direction 2:11 Demonstrating why the acceleration in the parallel direction is zero 3:58 Force normal does not equal force of gravity 4:32 Net force in the perpendicular direction 5:07 Return to the parallel direction 6:06 Substituting in numbers Next Video: Calculating the Uncertainty of the Coefficient of Friction Multilingual? Please help translate Flipping Physics videos! Previous Video: Physics "Magic Trick" on an Incline Please support me on Patreon! Introductory Static Friction on an Incline Problem
 demonstration
 coefficient

(and 7 more)
Tagged with:

Determining the Static Coefficient of Friction between Tires and Snow
Flipping Physics posted a video in Dynamics
We use Newton’s Second Law and Uniformly Accelerated Motion to experimentally determine the Static Coefficient of Friction between Tires and Snow. Want Lecture Notes? This is an AP Physics 1 topic. Content Times: 0:09 Reading and translating the problem 1:03 Visualizing the experiment 1:16 Where to begin? 1:45 Drawing the Free Body Diagram 3:09 Summing the forces in the ydirection 4:47 Summing the forest in the xdirection 6:24 Uniformly Accelerated Motion 7:35 Solving for the coefficient of static friction 8:18 All 9 trials Next Video: Breaking the Force of Gravity into its Components on an Incline Multilingual? Please help translate Flipping Physics videos! Previous Video: Everybody Brought Mass to the Party! 1¢/minute
 second law
 newton

(and 7 more)
Tagged with:

Video Discussion: Determining the Static Coefficient of Friction between Tires and Snow
Flipping Physics posted a topic in Video Discussions
Name: Determining the Static Coefficient of Friction between Tires and Snow Category: Dynamics Date Added: 20151008 Submitter: Flipping Physics We use Newton’s Second Law and Uniformly Accelerated Motion to experimentally determine the Static Coefficient of Friction between Tires and Snow. Want Lecture Notes? This is an AP Physics 1 topic. Content Times: 0:09 Reading and translating the problem 1:03 Visualizing the experiment 1:16 Where to begin? 1:45 Drawing the Free Body Diagram 3:09 Summing the forces in the ydirection 4:47 Summing the forest in the xdirection 6:24 Uniformly Accelerated Motion 7:35 Solving for the coefficient of static friction 8:18 All 9 trials Next Video: Breaking the Force of Gravity into its Components on an Incline Multilingual? Please help translate Flipping Physics videos! Previous Video: Everybody Brought Mass to the Party! 1¢/minute Determining the Static Coefficient of Friction between Tires and Snow 
To help understand the force of friction, mr.p pulls on a wooden block using a force sensor. Want Lecture Notes? This is an AP Physics 1 topic. Content Times: 0:17 Drawing the Free Body Diagram 0:43 Summing the forces in the xdirection 1:21 Graph when the block doesn’t move 1:46 Graph with the block moving Next Video: Does the Book Move? An Introductory Friction Problem Multilingual? Please help translate Flipping Physics videos! Previous Video: Understanding the Force of Friction Equation 1¢/minute

 introduction
 mu

(and 8 more)
Tagged with:

Video Discussion: Does the Book Move? An Introductory Friction Problem
Flipping Physics posted a topic in Video Discussions
Name: Does the Book Move? An Introductory Friction Problem Category: Dynamics Date Added: 20150819 Submitter: Flipping Physics Determine if the book moves or not and the acceleration of the book. It’s all about static and kinetic friction. Want Lecture Notes? This is an AP Physics 1 topic. Content Times: 0:08 Reading and translating the problem 0:57 5 Steps to help solve any Free Body Diagram problem 1:26 Drawing the Free Body Diagram 2:24 Sum the forces in the ydirection 3:22 Sum the forces in the xdirection 4:56 The answer to part (a) 6:22 Solving part (b) Multilingual? Please help translate Flipping Physics videos! Previous Video: Experimentally Graphing the Force of Friction 1¢/minute Does the Book Move? An Introductory Friction Problem 
Determine if the book moves or not and the acceleration of the book. It’s all about static and kinetic friction. Want Lecture Notes? This is an AP Physics 1 topic. Content Times: 0:08 Reading and translating the problem 0:57 5 Steps to help solve any Free Body Diagram problem 1:26 Drawing the Free Body Diagram 2:24 Sum the forces in the ydirection 3:22 Sum the forces in the xdirection 4:56 The answer to part (a) 6:22 Solving part (b) Multilingual? Please help translate Flipping Physics videos! Previous Video: Experimentally Graphing the Force of Friction 1¢/minute

The Force of Friction Equation is actually three equations is one. Learn why! Want Lecture Notes? This is an AP Physics 1 topic. Content Times: 0:00 The basic Force of Friction Equation 0:20 One Kinetic Friction Equation 0:39 The Two Static Friction Equations 1:40 Example Free Body Diagram 2:16 The direction of the Force of Friction 3:20 Determining the magnitude of the Force of Static Friction 4:09 Understanding the “less than or equal” sign 6:08 If the “less than or equal” sign were not there Next Video: Experimentally Graphing the Force of Friction Multilingual? Please help translate Flipping Physics videos! Previous Video: Introduction to the Coefficient of Friction 1¢/minute

 mu
 coefficient

(and 6 more)
Tagged with:

Video Discussion: Experimentally Graphing the Force of Friction
Flipping Physics posted a topic in Video Discussions
Name: Experimentally Graphing the Force of Friction Category: Dynamics Date Added: 20150819 Submitter: Flipping Physics To help understand the force of friction, mr.p pulls on a wooden block using a force sensor. Want Lecture Notes? This is an AP Physics 1 topic. Content Times: 0:17 Drawing the Free Body Diagram 0:43 Summing the forces in the xdirection 1:21 Graph when the block doesn’t move 1:46 Graph with the block moving Next Video: Does the Book Move? An Introductory Friction Problem Multilingual? Please help translate Flipping Physics videos! Previous Video: Understanding the Force of Friction Equation 1¢/minute Experimentally Graphing the Force of Friction
 graph
 experiment

(and 8 more)
Tagged with:

Please do not confuse the Coefficient of Friction with the Force of Friction. This video will help you not fall into that Pit of Despair! Want Lecture Notes? This is an AP Physics 1 topic. Content Times: 0:00 The equation for the Force of Friction 0:17 Mu, the symbol for the Coefficient of Friction 1:21 Tables of Coefficients of Friction 2:49 Comparing the values of static and kinetic coefficients of friction 3:54 A typical range of values Next Video: Understanding the Force of Friction Equation Multilingual? Please help translate Flipping Physics videos! Previous Video: Introduction to Static and Kinetic Friction by Bobby 1¢/minute

Video Discussion: Understanding the Force of Friction Equation
Flipping Physics posted a topic in Video Discussions
Name: Understanding the Force of Friction Equation Category: Dynamics Date Added: 20150818 Submitter: Flipping Physics The Force of Friction Equation is actually three equations is one. Learn why! Want Lecture Notes? This is an AP Physics 1 topic. Content Times: 0:00 The basic Force of Friction Equation 0:20 One Kinetic Friction Equation 0:39 The Two Static Friction Equations 1:40 Example Free Body Diagram 2:16 The direction of the Force of Friction 3:20 Determining the magnitude of the Force of Static Friction 4:09 Understanding the “less than or equal” sign 6:08 If the “less than or equal” sign were not there Next Video: Experimentally Graphing the Force of Friction Multilingual? Please help translate Flipping Physics videos! Previous Video: Introduction to the Coefficient of Friction 1¢/minute Understanding the Force of Friction Equation 
Bobby teaches the basics of friction and the differences between Static and Kinetic Friction. Want Lecture Notes? This is an AP Physics 1 topic. Content Times: 0:11 Basic definition of friction 0:40 What causes friction? 1:30 Static and kinetic friction demonstrated 2:10 Friction is independent of surface area 2:47 The direction of the force of friction Multilingual? Please help translate Flipping Physics videos! Next Video: Introduction to the Coefficient of Friction Previous Video: An Introductory Tension Force Problem 1¢/minute

 ap physics 1
 ap physics

(and 4 more)
Tagged with:

Video Discussion: Introduction to the Coefficient of Friction
Flipping Physics posted a topic in Video Discussions
Name: Introduction to the Coefficient of Friction Category: Dynamics Date Added: 20150809 Submitter: Flipping Physics Please do not confuse the Coefficient of Friction with the Force of Friction. This video will help you not fall into that Pit of Despair! Want Lecture Notes? This is an AP Physics 1 topic. Content Times: 0:00 The equation for the Force of Friction 0:17 Mu, the symbol for the Coefficient of Friction 1:21 Tables of Coefficients of Friction 2:49 Comparing the values of static and kinetic coefficients of friction 3:54 A typical range of values Next Video: Understanding the Force of Friction Equation Multilingual? Please help translate Flipping Physics videos! Previous Video: Introduction to Static and Kinetic Friction by Bobby 1¢/minute Introduction to the Coefficient of Friction
 coefficient
 friction
 (and 6 more)

Video Discussion: Introduction to Static and Kinetic Friction by Bobby
Flipping Physics posted a topic in Video Discussions
Name: Introduction to Static and Kinetic Friction by Bobby Category: Dynamics Date Added: 20150807 Submitter: Flipping Physics Bobby teaches the basics of friction and the differences between Static and Kinetic Friction. Want Lecture Notes? This is an AP Physics 1 topic. Content Times: 0:11 Basic definition of friction 0:40 What causes friction? 1:30 Static and kinetic friction demonstrated 2:10 Friction is independent of surface area 2:47 The direction of the force of friction Multilingual? Please help translate Flipping Physics videos! Next Video: Introduction to the Coefficient of Friction Previous Video: An Introductory Tension Force Problem 1¢/minute Introduction to Static and Kinetic Friction by Bobby 
The Benefit of Antilock Brakes
pavelow posted a blog entry in Blog Having Nothing to do with Physics
Bob is barreling down the thruway in his truck at 40 m/s when a crash occurs in front of it. The driver wants to stop in the shortest distance possible. He slams on the brakes. Before the invention and implementation of the Antilock brake system, or ABS, the truck's tires would have locked up and the truck would have slid into the crash. Why? When brakes cause tires to lock up, the type of friction between the tires and road changes from static friction to kinetic friction. This decreases the total force of friction between the surfaces. Because of the decrease in force opposing the truck's motion, the truck cannot stop in a short distance. How does the ABS prevent this? The Antilock brake system prevents the tires from locking up. Therefore, the type of friction between the tires and the road is always static, the strongest type of friction. The implementation of ABS into modern cars and trucks has prevented crashes from panicked drivers, such as Bob, by allowing them to come to a complete stop in shorter distances than before possible, even better than experienced drivers using advanced braking techniques without ABS. 
When taking corners quickly, the biggest worry most drivers should have is slipping and losing control of the car. This happens when a driver takes the corner too fast. The physics of taking a flat corner depends on the equation vmax = Sqrt(mu*r*g). mu, the coefficient of static friction, is constant, as is g, the acceleration due to gravity. Therefore, a driver trying to take a corner as quickly as possible would like to make the radius of the turn as large as possible to allow for a higher vmax, keeping his car from slipping at higher speeds. But how? Doesn't a road have a defined radius? Yes, and no. The picture explains it. The arrow in the figure is what's called a "line" this is the best possible way for a car to take a corner at the highest speed. The line a regular driver would take is very curved, mimicking the road, and not allowing for a high vmax due to the small radius. A race car driver would take a better line. The racer's line is significantly less curved than the regular driver's line, making the radius much larger, allowing for a higher vmax . The racecar driver starts and ends wide of the inside and hits the apex of the turn, allowing for the least curved line possible. To conclude, when trying to take a corner quickly, the driver of the car should start out wide, hit the apex, and end wide, causing a relatively high radius and a relatively high vmax, without having the car slip off the road.

 force
 centripetal

(and 7 more)
Tagged with:

Weird things can happen in balloons. They're affected a lot by static electricity. This is why it will stick to a wall or your clothes after it has been rubbed against something else, like your hair. This happens because of the charge of the balloon and whatever you're trying to stick it to. Something that is charged negatively will stick to something that is positively charged. If you rub a balloon against your head, it becomes negatively charged because it gains electrons from your hair. This picture shows what happens when you put a charged balloon on a wall. The balloon is negatively charged. When the balloon comes in contact with the wall, the wall and the balloon both become polarized. The negative particles in the balloon are attracted to the positive particles in the wall, and also push the negative ones in the wall away, so they stick and the balloon appears to be floating all by itself. Another thing that can happen is that two balloons can repel each other. If two different balloons are rubbed against your hair or clothes or anything else that loses electrons, they will both become negatively charged by gaining electrons. If they are brought near each other, they will want to repel. But it my opinion, it is more fun to see balloons stick to things. Like this cat.
 2 comments

 balloons
 electricity

(and 1 more)
Tagged with:
Terms of Use
The pages of APlusPhysics.com, Physics in Action podcasts, and other online media at this site are made available as a service to physics students, instructors, and others. Their use is encouraged and is free of charge. Teachers who wish to use materials either in a classroom demonstration format or as part of an interactive activity/lesson are granted permission (and encouraged) to do so. Linking to information on this site is allowed and encouraged, but content from APlusPhysics may not be made available elsewhere on the Internet without the author's written permission.
Copyright Notice
APlusPhysics.com, Silly Beagle Productions and Physics In Action materials are copyright protected and the author restricts their use to online usage through a live internet connection. Any downloading of files to other storage devices (hard drives, web servers, school servers, CDs, etc.) with the exception of Physics In Action podcast episodes is prohibited. The use of images, text and animations in other projects (including nonprofit endeavors) is also prohibited. Requests for permission to use such material on other projects may be submitted in writing to info@aplusphysics.com. Licensing of the content of APlusPhysics.com for other uses may be considered in the future.