Book Review: The 32 Most Effective SAT Math Strategies

WarnerBook Steve Warner’s 32 Most Effective SAT Math Strategies is more than a book of secrets to help students maximize their SAT math scores… it’s also a guide to problem solving and learning strategies that extend considerably beyond the bounds of the SAT exam itself. As a physics teacher, I can strongly assert that the most effective review book for any test is the book the student will use, and that requires a friendly, concise text that is clear, easy-to-read, and well paced. Warner’s book does this and more, coaching students to maximize their results while minimizing effort.

Outside the context of SAT exam preparation, the strategies detailed in The 32 Most Effective SAT Math Strategies provide a pathway to grow the reader’s general problem solving skills. Readers are encouraged to solve problems, learn independently, and attempt higher level challenges, enhancing their mathematical and logical maturity levels as they attempt to not only solve, but understand, the given problems.

I highly recommend this book for anyone preparing for the SAT exam, as well as those looking to refresh their basic mathematical skills and enhance their ability to think logically. And make sure to check out his website, which has free problem sets, tips, and videos!

10 Quick Tips to Maximize your Regents Physics Score

Although by no means an exhaustive list, these 10 quick tips may help you secure that extra point or two on your upcoming Regents Physics exam.

  1. Mass and inertia are the same thing.
  2. To find the resultant, line your vectors up tip-to-tail, and draw a line from the starting point of the first vector to the ending point of the last vector.
  3. Any object moving in a circular path is accelerating toward the center of the circle.
  4. Acceleration of an object is equal to the net force on the object divided by the object’s mass.
  5. The normal force always points at an angle of 90° from the surface.
  6. Opposite charges and magnetic poles attract, likes repel.
  7. Gravitational forces and electrostatic forces both follow an inverse square law relationship, where the strength of the force is related to one divided by the square of the distance between the charges/masses.
  8. The force of gravity on an object, commonly referred to as weight, is equal to mg, where g is the gravitational field strength (also referred to as the acceleration due to gravity).
  9. The mass-energy equivalence can be calculated using E=mc^2. If a mass is given in universal mass units, however, you can do a straight unit conversion using 1u = 931 MeV.
  10. Protons and neutrons fall into the category of baryons, which are hadrons. Smaller particles, such as electrons, fall into the category of leptons. Mesons are rare, weird particles you probably haven’t heard of.

Most importantly, use your reference table. When in doubt, write down the information you’re asked to find, what you’re given, and use your reference table to help you narrow down what you should be doing. In the free response part of the test, make sure to show your work in detail with a formula, substitution with units, and an answer with units.

Find these and many more tips for success at APlusPhysics.com.