Jump to content

Blogs

Our community blogs

  1. The gymnast on the balance beam does work and power to jump on the beam and do cart weels. The rhythmic dancer's ribbons go through centripetal force. The force is center seeking which causes the constant change in direction. When the gymnast jumps to the rings he does work and power too.

  2. aweld98
    Latest Entry

     I just returned from a calc group session at school with my friends and our calculus teacher.  My friend, in an attempt to make Taylor Polynomials and series less of a burden, brought along her little dog.  Ironically, as I was sitting there, the pup inspired what I am afraid will be my final blog post of my AP Physics C year.  Well, my friend had gotten up from her seat, and the dog, which was tied by a leash to the chair, wanted a change of scenery.  As a result, she attempted to jump onto the very chair which she was tied onto.  However, as soon as her paws came in contact with the chair, she skid across the surface of the chair and nearly fell off the opposite side.  So, what did the little doggy fail to consider in her take off towards the chair?  Well, there are a few factors.  First off, when the dog took off from her hind legs, she made an angle with the floor; she had both horizontal and vertical components to her velocity.  As a result, when she hit the peak of her trajectory path, hence landing on the chair, her vertical velocity was zero, but her body continued to move in the horizontal direction due to the horizontal component of her velocity.  In addition, because the surface of the chair is slicker than most surfaces, resulting in a lower coefficient of friction, there was little frictional net force present in order to decelerate her horizontal velocity.  Ideally, in order to prevent any skidding, the dog would simply have jumped completely vertical and landed on the chair, hence having zero horizontal velocity (this application is not ideal, however, because it would involve the dog jumping through the solid seat of the chair, which is impossible and would hurt, to say the least).  However, a large angle with the horizontal would increase the sine component of her velocity and minimize her horizontal velocity, and therefore skidding.

  3. Recently we learned about resonance, which by definition is "the tendency of a system to oscillate with greater amplitude at some frequencies than at others." This is one of the many examples of physics found within the guitar. Tuning a guitar is an example of resonance. The string's vibrations create sound waves with different frequencies. Also, when you plug in your electric guitar to the amp, you are actually making use of a physics skill! You are making a speaker. The amplifier projects the sound waves which leads to louder sound. However, these sound waves might sound a little muffled to your mom who has on earplugs. You can change the bass and the treble which alter the way your eardrums detect the sound waves. As opposed to acoustic guitars, electric guitars are electrical, so they require circuits, current, and an electrical source.

  4. As summer gets closer, the weather gets warmer and everyone itches to get outside. One of my personal favorite things to do on those hot summer days is to go swimming! So many people enjoy it and it is something that they do all the time, but the majority of people don't stop to think about all of the physics that is involved in it. And there is a lot!

    First, the most obvious is the difference in gravity. When you are just walking around normally, you stay on the ground. You never begin to float towards the sky because of the force of gravity on earth. The force of gravity is 9.81m/s^2. However, as you may know, when you are in a pool or the ocean it is very hard to stay on the ground because there is nothing pulling you down. But you are still on the earth... so how can that be possible? Although the force of gravity is the same, there is an additional force acting in the water called buoyancy. This means that when an object is put in water, it will displace the amount of water equal to its volume. This is why objects appear to be lighter when they are in water.

    There is also a lot of resistance in water. Water is about 1000 times more resistant than air and about 91% of a persons energy is lost through drag. Therefore, when swimming competitively, swimmers need to maximize their streamline. They can do this by wearing swim caps. As you can see, there is a lot of physics in swimming. So next time you jump in the pool, think about all of the physics that is going on! Thanks for reading :)

  5. it is obvious that our winters are not like those in miami. We can have some very harsh weather and it is important to be prepared when driving from place to place in the ice and snow. To be safe, car maufacrures must consider the elements of friction. This is why many cars have for wheel drive: for better traction on the ice. A car going down the road would qualify as kinetic friction and since the ice has little friction so the nature of the ice must be balanced. Another way to prevent accidents on an icy road would be by putting salt on the road to change the nature of the ice and create a greater frictional force.

  6. The shift in a wave's observed frequency is due to the relative motion between the source of the wave and an observer. As a car beeps its horn while traveling, it has a constant frequency and as the velocity increases, the sound waves from the observer have lower amplitudes and are less frequent. This is known as the Doppler effect. As sound waves come toward the observer they have higher frequencies than the sound waves moving away from the observer. Not only does frequency help explain the Doppler effect but it also explains how the police are able to find the speed of cars on a highway. A radar gun can be used to determine the speed of a car by measuring the different frequencies between emitted and reflected radar waves!

  7. Brittany16
    Latest Entry

    at one point in everyone's lives they have tried to use a pogo stick (some more successful then others).

    for starters there is elastic potential energy stored in the spring. which is the work that is done stretching, in this case compressing, the spring. you can find out just how much energy is stored through using the equation PEs= 1/2kx^2. where k stands for the spring constant or the stiffness of the spring and x stands for the displacement from equilibrium. (the difference from the original spring and how long/ short it is after you stretch/compress it. also the more you stretch or compress the spring the greater the fore of the spring. in this case it means that the more you compress the spring the higher off the ground the pogo stick will go. have fun pogoing.

  8. rtsully829
    Latest Entry

    I'm sure you have heard about, read about it book and even seen it in movies. Well I am hear to give you a basic overview, it is very complicated once you really look into it. I'm hear to shed light onto this for all of you. (All with out the use of a flux capacitor or a Delorean.)

    tumblr_lurwloteu81r0o16yo1_500.jpg

    I'm going to talk about the types into the future or into the past. Lets start with the future. In some ways this is on display everyday. The clocks on the GPS satellites need to be adjusted due to fact that when you are moving

    time moves slower thus you age slower. In theory, you could send someone out into orbit for say 20 years, he would only age 20 year when family member and friends on earth would age 30 or 40 years. And the faster you move the slower time would move but you would run into the problem that the faster you move the more massive you become.

    r-BACK-TO-THE-FUTURE-DELOREAN-large570.jpg

    Something I think that cool about time travel into the past is in some ways we see it all the time too, ever night to be exact. When you look at a star, your not seeing how it looks now, you seeing how it look 100, 200, even 1000 years ago. Now don't be worried, I know you though it would be slightly more interesting and let me try my best to make it so. Einstein's law of causality does kind of put a damper on the idea that you could step in a machine and just go back due to, in simple terms, cause and effect. Everything happens causing something else and something else to happen and we can't upset that. Now don't give up your dreams just yet. some physicist do theorize that if we could push past light speed time could flow backwards.

    Well there it is in a few minutes, time travel. Now to fully understand the science and theory behind it you would need to read a book and be much smarter than me. It is something very cool to think about. Stephen Hawking as talked about the idea of time traveling tourist if you want to look into that. But to save you the time. But if someone knocks on your door claiming to be your great-great-great-great-great-great-great-great-great-great-great-great-great-great-great grandson, maybe you should listen.

  9. Many people enjoy the game of ping pong such as myself. Ping pong can relate to physics such as forces and acceleration. Because the ball will always be the same mass one must use a larger force on te paddle to make the bal accelerate faster. In order to win the point, you must have a larger velocity than the initial velocity which is the velocity coming from the oponent. In order to do this you must have a larger acceleration therefore use a larger force

  10. Mixtapes have physics behind them but you have to look at in a different perspective. Mixtapes have wave interference which is two or more waves in the same medium at the same time and same location. Mixtapes use sound waves and a lot of times artists who make mixtapes choose two waves that start at the same time to start their song. A new sound wave might interfere but they both continue as if they have never met and that represent constructive interference. If there is a destructive interference there will be a smaller amplitude which means it will be a softer sound for the mixtape.

  11. Physics of Swimming

    When i first looked up the physics of swimming, i got many different answers. There were many different ways that swimming can tie into physics. I am going to give a formula that is on the refrence table and can relate to because weve used it in physics class before.

    To kick 100 meters it takes 80 seconds. When kicking, a swimmer can travel at a velocity of 1.25 m/s. To pull 100 meters it takes 60 seconds. When pulling, a swimmer can travel at a velocity of 1.6 m/s. To swim 100 meters with both the arms and the legs it would take 50 seconds. When swimming using both the arms and the legs, a swimmer has a velocity of 2 m/s. The arms therefore generate more propulsion than the legs. The propulsion generated by the legs is 62%. The propulsion generated by the arms is 83%. The ratio of pull to kick is 1.3, meaning that the pull is 1.3 times greater than the kick. Water applies a force perpendicular to each surface of the swimmer's body.

    F = PA

    The force acting perpendicular to the surface of the swimmer's body is equal to the pressure acting on the swimmer mulitiplied by the surface area. For example, if the Pressure acting on the back of a swimmer's hand 1.3 x 10^5 Pa and the surface area of the back of the hand is 8.3 x 10^-3 m^2 then the equation F = PA would yield:

    F = (1.3 x 10^5 Pa) * (8.3 x 10^-3 m^2) = 1079 N.

    As you can see alot of the information would just be plugging in the informations thats given to you. You can also see that it takes alot of work to swim, its also been said that swimming is the best workout you could do for your body.

    I hope i have opened your eyes to a new way of thinking about swiming, especially with sumer coming up, thank you for reading my blog :)

  12. Hey y'all,

    Chris, a student at Cornell, wakes up at 8:59am for his 9:05 class. If the class is 1.5 km away, at what constant velocity does he need to travel in order to make it to class at 9:05? Neglect air resistance.

  13. reedelena
    Latest Entry

    Positive charges their electric fields are pointed out away from the charge. A negative charge their electric field is pointed toward the charge. When a positive and a negative charge are brought close together they will be drawn toward each other, they are magnetic. The electric fields never cross each other when they are magnetic. When you bring a magnetic positive charge and a positive charge together they will be repulsive, the same holds true if you bring a negative charge and a negative charge together. They are repulsive charges. The equation for electric field strength is E=Fe/q.

  14. I just hit a parked car (I did not do a hit and run i waited and hour for the people to come to there car) I was trying to pull around a bend into a front row spot i thought i cleared the car that was next to mine. Unfortunately, my depth perception was wayyyyy of! Because i drive a big truck it was hard to judge the distance between my car and the tiny little car that i hit. I then hit the car and the energy from my car was transferred from my car to the tiny car. The tiny car then moved after my car hit it and stopped. Then i went into reverse and pulled into the spot to asses the damage that was done. I look at the little car. The dent on its bumper was as deep as a giant cereal bowl. Like you could eat 2 servings of your lucky charms out of it. After the panic was gone i realized how much physics was involved in stupid mistake. Anyways, I then thought oh god i can't even imagine what my car looks like! I then walk to the front corner of my front bumper to see the damage. My ol trusty rusty only had a scratch on it no dent at all. I thought how could this be then I realized that the Force i applied on the tiny car must have been so much because my car was so much bigger. Fnet= Ma. So I was taking a corner at a speed/velocity of 4 m/s.The mass of my car is 2143.22 kg. and I was accelerating at a speed of about 4 m/s squared. therefore the force applied to little car 8,572.88 newtons. Then i though about how my car made the little car move! Bucky must have had to put forth a lot of work. Bucky is the name of my car. Work, W=fd. The displacement from where my car was and by the time i hit the tiny car was probably about 1 meter. So the work exerted by Bucky 8,572.88. N Thats a lot of work! poor Buck! SO the morel of the story is never go for the front row spot! Park out in east jesus because trust me the walk will be much better than exchange insurance info with a pissed off lady.

  15. ZZ
    Latest Entry

    The other day I was watching a soccer game, West Ham United vs Arsenal FC. I know I do blogs on soccer all the time but it's because I am just so fascinated by the things these players are able to do, hence why they are professionals. One of the players, Andy Carroll scored a bicycle kick, where a player flips himself/herself upside down with their foot in the air and kicking it over their head (sometimes referred to as an "overhead kick"). While this one was good, it reminded me of one from several years ago that another professional, Wayne Rooney performed in a game. Here's the video:

    While this goal may still have you in awe (this happens maybe once every several years by the way), I'd like to start talking about the physics. So it all started with the crosser, Nani, who crossed the ball in at about 22 mph (the speed of an average cross). This speed of the ball means the reaction window for Rooney was microscopic, even to just put the ball on target - much less the upper corner of the net. A half second too quick or too slow and this bicycle kick will end up on the blooper section of sportcenter. Upon timing the jump, Rooney is in the air for about 3/4 of a second, meaning the margin for error is quite small. Rooney's foot has also been measured to be 1.80 meters above the ground (5'9") which is about the same height as Rooney. So you might ask, what is the advantage of doing this if he could've headed the ball instead? While this is normally what players do in this scenario, a header simply wouldn't have provided the same force (and thus acceleration) on the ball. This is because of the net torque on the ball. With a header, one really only uses a little less than half of their body to cock back and snap into the header to deliver a net force upon it. However, with a bicycle kick the whole body is involved. Since the body in midair experiences no outside forces, it acts as if it were a rotating object, where both halves of the body contribute to a clockwise motion to allow a well powered kick.

    In addition, you will notice that he kicks one leg first and then the other. This has to do with momentum. as he generates momentum in one direction, this allows him to change the motion with the other leg and allow a greater velocity with his kicking leg before it makes contact with the ball. 

    All in all this stands as one of the best premier league goals of all time, ask anybody. It's really cool now to understand how Rooney did this (I know I never could):notfair:

  16. blog-0949870001429214166.pngWaves in water are produced in many different scenarios. For example, when someone goes to the beach and decides to skip rocks, they produce a wave in the water. The water particles then move and continue to move creating a mechanical wave. these kinds of waves require a medium to pass through. who knew such a fun experience could experience so much physics.
  17. If someone asks why physics is so important, tell them that the world just wouldn't work without it. Not the way we know it at least. As this is my final post of the year, I thought it'd be a cool idea to talk about what the world would be like if certain parts of physics didn't exist. In a previous post, I discussed the difficulty that would come with living in a world without friction, and I also mentioned how without electrostatic force, objects would phase right through each other. It would also mean current electricity would not exist, but what would that matter if we couldn't even use it. If gravity didn't exist, objects would keep moving until they hit something, and everything in space would just drift endlessly in one direction. Which means the earth could potentially drift into another planet or a star, which wouldn't be good. Without magnets, we'd have to find different ways to generate electricity or make power, and compasses would have never been invented, so navigation wouldn't be as easy. So yeah, physics is pretty important, unless you prefer a world that doesn't work. It's what makes our world possible.

  18. blog-0128491001370815340.jpg Wind is the flow of gases on a very large scale. Wind is caused by the differences of pressure in the earth’s atmosphere. Wind is caused by two major factors on the planet earth. The first being the sun and the second being the rotation of the planet. The sun does not heat up the earth’s atmosphere evenly, as most of the solar energy is absorbed at the equator. When the air becomes heated it expands creating an area of higher pressure. Diffusion causes this area of higher pressure to move to an area of lower pressure. On a very large scale this would massive amounts of air to travel from one area to another, creating vast amounts of kinetic energy that can be harnessed by humans through the use of a wind turbine.

    A wind turbine is used to harness the kinetic energy of vast amounts of wind, and transform it into electricity. This can be shown with a very simple calculation. First we need to remember that wind is an air mass moving from an area of high pressure to an area of low pressure. This movement of air is kinetic energy and can be shown by the formula:

    KE= 1/2 MV^2

    KE= kinetic energy

    M= Mass

    V= Velocity

    Thanks for Reading :)

  19. SJamison
    Latest Entry

    Elon Musk is a god! 

  20. We all know the type of people who have never met a mirror they didn't like, get it? Well not only do they like their own reflection, but they obviously like it because of the physics that it bestows! A mirror is an example of a specular reflection because it is a smooth surface that easily allows reflection to the point of visibility.We can see how the angle at which the wave strikes the mirror is equal to the angle at which it reflects off of the mirror due to the law of reflection. And no matter what angle we use, this will always be constant! Now if something is ugly enough and the mirror happens to shatter, hypothetically speaking of course, the gravity in the shards of glass falling and the force with which they hit the floor are components of physics too! :D

  21. public-service-broadcasting-04-gq_20feb15_b_1445x878.thumb.jpg.43381713ce93f6fcc89704aebd7a54b0.jpg

     

    The Space Race between both the USSR and the United States is by far one of my favorite eras of history to study. They say competition is the perfect motivation, and I truly believe, from a technological standpoint, this is era is a prime example of that motto in its purest form. Some of the biggest strides in human history were made in a time where computers were still the size of rooms all due to fear, curiosity, and drive. Public Service Broadcasting’s album, “The Race For Space”, tries to capture all of these emotions, during a handful of critical points, along this journey in order to show how important this period was for Humanity as a whole. (I will cover the tracks in event order not track order)

    Sputnik_670.jpg.2377f800166b61ec48afefd37a88f310.jpg

    Track 2: Sputnik

    The year is 1957, and, as tensions of the Cold War are ever increasing with no end in sight, humanity has its eyes on the one place neither power has even traveled: space. The Soviets, ever fearful of the United States launching into orbit, rushed through their plans to launch a 3,000 pound satellite equipped with various scientific instruments.  They ended up downsizing dramatically to a 184 pound payload with a 58 centimeter diameter without any instruments. On October 4th of that year it was launched on a R-7 rocket with four stages. It nearly suffered a catastrophic launch failure, but the a combination of engine thrust and wing movement saved it last second.  Well what did it do? It beeped. And that beep was the beep heard all around the world. Well at least for 22 days… its batteries actually exceeded the expectation of 14 days. For the first time in all of human history something was able to orbit the earth. It wasn’t the first man-made object in space, but it was the first which was in continual free fall around the earth. So, yes, the Soviets to prove themselves put a beeping piece of metal into orbit because that is all they needed to do to stir so much amazement and fear. The device whose name directly translates to “travelling companion”, would be the spark which set the both  countries ablaze and straight into the most heated technological race in all of human history.


    570bba6ec461884a5b8b45c3.jpg.903625166dcc3e0ccc02317ac806bccf.jpg

    Track 3: Gagarin

    It is now April 12th, 1961. Multiple years have passed since Sputnik, but no shortage of tests and animals had been launched into space, including the famous cosmonaut dog Laika on Sputnik 2. Now it was time to push the barrier forward onto man's reach into space. Enter Yuri Alexeyevich Gagarin. A 27 year old Senior Lieutenant Gagarin was chosen out of over 200 Russian Air Force fighter pilots by peers and project heads due to his exceptionally quick thinking and attention to detail. At 9:07 A.M. Vostok 1 took off carrying Gagarin on board. Due to the feared consequences of free fall, the Russian mission control was totally in control of the craft the entire time. Yuri was the first human ever in space, a true high water mark achieved by humanity. His trip lasted one obit, a total of 108 minutes. While the United States press showed fear of losing the space race, he was seen in many places as a hero for humanity, going on a global world tour to be paraded around countries including England, Canada, and, of course, across the USSR. This stance of him being a pioneer, regardless of national affiliation, is what PBSB was aiming for in their upbeat track. Looking back now it is easy to say he was a true pioneer for all of humanity and his efforts will forever go down in history as that of a hero.
     

    JFK_at_Rice_University-JFK_Library-879x485.jpg.c578a85eec456942f5d8630ba8ee29a1.jpg

    Track 1: “The Race for Space”

    The date is now September 12th 1962. President Kennedy is making a speech to 40,000 people in Rice Stadium. At this point, the United States is far behind in the space race launching the first American, John Glenn, nearly a year after Gagarin. Kennedy knew he needed to rouse the American spirit, and, in effect, his speech became a defining speech in American history. A link to the full speech can be found here:  https://er.jsc.nasa.gov/seh/ricetalk.html.

    Perhaps one of the most ambitious technological proposals made by a president, Kennedy promised that by the end of the decade America would put a man on the moon. Keep in mind no spacewalks had been taken, lunar modules had been made, no docking sequences had even been practiced, and here was the nation’s leader saying we could make it in 8 years or less. The National Defense Education Act had been passed due to Sputnik and had been in effect since October 4th 1957. Now its efforts of acting as a booster for the mathematics and science related fields was beginning to see results. Young engineers and scientists began coming out of Universities in order to rapidly increase the nation’s technological investments to bound ahead. This key moment not only left the nation space crazed, but made getting to space a budgeted objective at the front of the nation's interest. This vow and critical commitment is what would pave the way for the American Space program to come, as now Americans all over had their eyes on the skies.
     

    58b9576bc3618842568b45c5.jpg.9fd4ebe8c0ea8db7d65dbe751cb9a38c.jpg

    Track 7: “Valentina”

    Fast forward to June 16th, 1963, Vostok 6 is launched. It is the last in the man orbital missions launched by the USSR starting with Gagarin. Well what made this so different? This time the passenger was Valentina Tereshkova. Yes, the first woman in space. Her mission lasted 3 days and she kept two way radio communications with Voltok 5 which was orbiting with her. In this time she made 48 orbits, which was quite a large feat at the time. Her personal background was that of an avid skydiver and textile factory worker making her the first civilian in space as well. The space suit she wore was the MK-2 which was very similar to the MK-1 that Gagarin wore. These suits were only meant to be pressurized in an emergency, such as if the cabin was punctured. It would take a better space suit in order to do an EVA which is the coming up milestone. Up until this point, humans have remained within their pressurized cabin in order to take a safe trip, but now we move onward and upward by finally getting out of the restrictive hull.

     

    worlds-first-SpaceWalk.png.3cce17721e3add7143e5b8c4db4fc5f1.png

     

    Track 5: “E.V.A”

    On the 18th of March 1965, the Voskhod 2 mission was launched. Two cosmonauts were abroad: Pavel I. Belyayev and Alexey A. Leonov. Belyayev was the primary pilot while Leonov was the secondary, but he had a far more important mission. He was to perform the first E.V.A trialing the first space suit with a life support system in the backpack. The flight lasted 26 hours and made 16 orbits. During this time the first spacewalk lasted approximately 20 minutes with Leonov claiming the experience gave him a sense of complete euphoria and tension at the same time. The mission, being reported as a major success, acted as a dramatic blow to the United States government. At the same time, many catastrophic failures occurred while in space, but were never reported on the ground. A few moments after Leonov stepped out of the shuttle he realized his suit had inflated to the point he could not get back in. He needed to decompress, and as he let out oxygen he began feeling the initial symptoms of decompression sickness. He began pulling rapidly on the cord thrusting himself in with a moment to spare, but at his current temp he was at risk of heat stroke. His perspiration blocked his view so he had to maneuver around the airlock blind. He eventually did it and made it back in to the safety of the shuttle. This was only the start of the problems though. Due to this maneuver the oxygen content of the shuttle soared, meaning any single spark would have it blow up as quick as a flash. They managed to lower the oxygen concentration back to a safe levels. The ultimate test occured when they had to manually re-enter the atmosphere due to engine problems. They were exposed to high G forces along with high temperatures only to land off course in Siberia. They were eventually recovered and hailed as heroes. This was yet another large step to making it to the moon with the United States still lagging behind. And they were soon to have one of their largest hardships to date.

     

    s67-19766.thumb.jpg.32174e073e1d021a9673b30ce94db6ed.jpg

    Track 4: “Fire in the Cockpit”

    On the 27th of January 1967, an event which would live in national infamy occurred. The Apollo 1 space crew, comprised of Virgil Grissom, Edward White, and Roger Chaffee, all entered their command module to undergo a simulation for their up and coming launch. The first problem arose when Grissom complained of a “sour smell” in the spacesuit loop, but decided to continue the test. This was followed by high oxygen flows triggering on and off the alarm. This wasn't resolved as the communications were experiencing problems resulting in the line being only between pilot Grissom and mission control. At 6:31, oxygen levels quickly rose as Chaffee casually says he smells fire, but within two seconds, White proclaims, “Fire in the cockpit.” Escape procedure was supposed to take ninety seconds, but ultimately that time frame was too long. In the highly oxygenated environment, the fire spread too quickly, followed by the command module rupturing forcing black smoke across the landing pad. An eventual investigation found that the fire was started by a faulty bundle of wires located behind their heads. It took firemen three minutes to quell the fire and to open the doors, but it was too late all three perished. It was a day of national remembrance and an overall low in the American Space program up until that point. Their sacrifices were distinguished with the highest regard as the nation mourned and tremendous loss.

     

    1055615914.jpg.694f85df9037207a0830916a6aba88bc.jpg

    Track 8: “Go!”

    Apollo 11 is by far the most known aspect of the space race. It is the moment where scholars say the United States sealed their place as the winners of the space race. It inspired kids for years to come to become astronauts. The Apollo 11 mission’s ultimate goal was to land the first man on the moon fulfilling Kennedy's earlier promise and legacy. Apollo 11 launched on July 16th, 1969 with astronauts Neil Armstrong, Michael Collins, and Edwin “Buzz” Aldrin. It took 75 hours to reach lunar orbit. This is where the focus of the song is. It includes a systems check as the lander makes it's landing maneuver and lands on the surface. The utter tension at mission control was palpable. This was the most critical part of the mission, and when they landed, from the utter joy heard over the radio, the public knew they had finally done it. Tee descent began at 102:33 with the ultimate touchdown resulting at 102:45. After a period of set up and a postponed rest period, Armstrong made his exit onto the surface at 109:24:19 to utter those famous words. Aldrin soon followed behind with the whole thing being broadcasted to the American Public. This moment, the moment where America gathered around their television screens to watch them be the farthest away from anyone else that any human has ever been, was the height of the space race. They made their return launch starting at 124:22 and plunged back into the Pacific Ocean on July 24th. These pioneers set the standard of human exploration in the space age and acted as role models for new explorers for years to come.
     

    on-this-day-apollo-17-astronauts-are-last-men-to-walk-on-moon-136394952844603901-141212215753.jpg.d552a8edca88908f55418efd87d8e229.jpg

    Track 9: “Tomorrow”

    The last track of the album is of course the most inspirational. It focuses around Apollo 17, which was the last manned mission to the moon. it was launched on December 7th, 1972 with crew members Eugene Cernan, Ronald Evans, and Harrison Schmitt. It's main objectives were to put a Rover on the moon, conduct testing, and take samples such as moon rocks and photographs. In total over 16 hours of EVA were conducted, 30.5 kilometers we're traversed by the rover, and 243 pounds of samples were collected. The mission was a success but extremely bitter sweet being the last mission in the Apollo chapter. It ultimately completed the era of the Space Race. It has much more sentimental value in this aspect, as the track takes the time to reflect on the previous decade and a half of progress and how far the human race has come.

     

    Ultimately the space race was a period of history where nations gathered behind the scientific progress they conducted. Yes, there was always the fear of mutual destruction, but the sense of shared awe at what humanity achieved far overshadows that factor when looking back at history. There are not many periods of history where technology progressed at such breakneck speeds, and may not be for a long time. There is plenty more to read about the period, and I encourage you to do so if this interested you at all.

     

     

    As always it had been a pleasure! This is ThePeculiarParticle, signing out.

     

     

     

    Informal Bibliography

    Esa. “The Flight of Vostok 1.” European Space Agency, European Space Agency, www.esa.int/About_Us/Welcome_to_ESA/ESA_history/50_years_of_humans_in_space/The_flight_of_Vostok_1.

    “The First Spacewalk.” BBC, BBC, 2014, www.bbc.co.uk/news/special/2014/newsspec_9035/index.html.

    Larimer, Sarah. “'We Have a Fire in the Cockpit!' The Apollo 1 Disaster 50 Years Later.” The Washington Post, WP Company, 26 Jan. 2017, www.washingtonpost.com/news/speaking-of-science/wp/2017/01/26/50-years-ago-three-astronauts-died-in-the-apollo-1-fire/?noredirect=on&utm_term=.7d4feb08cec3.

    “NASA.” NASA, NASA, www.nasa.gov/.

    “National Air and Space Museum.” The Wright Brothers | The Wright Company, airandspace.si.edu/.

    RFE/RL. “Kennedy's Famous 'Moon' Speech Still Stirs.” RadioFreeEurope/RadioLiberty, RadioFreeEurope/RadioLiberty, 13 Sept. 2012, www.rferl.org/a/kennedy-moon-speech-rice-university-50th-anniversary/24706222.html.

    “Space.com.” Space.com, Space.com, www.space.com/.

    “Sputnik Spurs Passage of the National Defense Education Act.” U.S. Senate: Select Committee on Presidential Campaign Activities, 9 Mar. 2018, www.senate.gov/artandhistory/history/minute/Sputnik_Spurs_Passage_of_National_Defense_Education_Act.htm.

    (Disclaimer the websites were used many times for different articles)

     

     

     

     

  22. To start your swinging motion, you must push off the ground to create some type of energy you wish to increase. As you swing backwards to get a starting swing from gravity, your potential energy will increase as your body moves forward. Going backwards, your potential energy decreases and increases in kinetic energy. Whether you're increasing or decreasing in kinetic or potential energy, the increase or decrease is the same amount of either energy. So for example, the amount of kinetic energy you lose is the amount of potential energy you will obtain.

  23. A partial derivative uses this nice formula. (f)/(x), where f:R^2->R is lim h->0 (f(x+h,y)-f(x,y))/h. Physics is everywhere, waiting, watching. 

  24. ever play with a slinky by pushing it down the stairs? well that's not all you can do with slinkys you can learn about waves with them. if two people hold each end of the slinky then move the slinky up and down then you can see a transverse wave that is a mechanical wave to because it have a medium (the metal). You can create all types of frequency's and amplitudes by either moving your hand up and down faster or slower. another wave you can see is a longitudinal wave by pulling the slinky together then letting go. you will see that the wave moves in the same way the velocity does. it doesn't move up and down it moves side to side. so next time you play with a slinky try to create some waves because you will be able to learn something's while having fun!

  25. blog-0721020001368805932.jpgyou probably always woundered how we could see out of our eyes. At least EYE always have..... of course there has to be some sort of physics to it right? well of course there is and refraction is there to prove it. Refraction is the phenomenon which makes image formation possible by the eye as well as by cameras and other systems of lenses.

    Most of that refraction in the eye takes place at the first surface, since the transition from the air into the cornea is the largest change in index of refraction which the light experiences. About 80% of the refraction occurs in the cornea and about 20% in the inner crystalline lens.

    While the inner lens is the smaller portion of the refraction, it is the total source of the ability to accommodate the focus of the eye for the viewing of close objects. For the normal eye, the inner lens can change the total focal length of the eye by 7-8%. Common eye defects are often called refractive errors and they can usually be corrected by relatively simple compensating lenses.

    Light that passes through the pupil opening, will enter the crystalline lens. The crystalline lens is made of layers of a fibrous material that has an index of refraction of roughly 1.40. Unlike the lens on a camera, the lens of the eye is able to change its shape and thus serves to fine-tune the vision process. The lens is attached to the ciliary muscles. These muscles relax and contract in order to change the shape of the lens. By carefully adjusting the lenses shape, the ciliary muscles assist the eye in the critical task of producing an image on the back of the eyeball.

  • Recently Browsing   0 members

    No registered users viewing this page.

×
×
  • Create New...