Jump to content
  • entries
    30
  • comments
    20
  • views
    11,544

About this blog

Blogging with the Walshster

Entries in this blog

Likely the most embarrassing bike crash ever

"The following is a recreation of the real world events of a late October day in two thousand eleven, anno dominae." T-10sec: Timothy is riding along on his bicycle, and comes across a group of walkers blocking the roadway. Being the amiable gentleman he is, he decides to go around them, swerving onto the sidewalk. T-1sec: Disaster seems ready to strike our hero, for as he prepares to dive back into the street he strikes a pedal on the driveway, lifting his rear wheel up and reducing its

walsh416

walsh416

Turning a bike!

Golly gee biking (cycling) is hard. Perhaps the hardest part of all is mastering high speed cornering. You see it all the time in the Tour de France; pros carving graceful arcs as they fly down mountainsides at 100kph. How do they do it? By maintaining an incredible awareness of where their center of mass is relative to their bike at all times, and adjusting it so that they can achieve the right angle of cornering. By far the most common mistake any new cyclist will make is to turn their

walsh416

walsh416

Catapult Day!

So we launched catapults on Friday, that was pretty intense. In theory, ours was utterly perfect. We optimized it mathematically, and built it with the strongest $1.99 2x4s in all the land. What we didn't account for was wind. Not wind's effect on our projectile, but on the catapult itself. When cocked, our catapult had 135 pounds roughly four feet in the air (about 700 joules of potential energy, for those keeping score). During one launch our catapult, well, fell on me. If it fell two

walsh416

walsh416

Relax, I'm Here.

Ever since my birth in a log cabin in Montana, I've made a hobby of moonlighting in all of the occupations listed here, proceeding through them alphabetically. Personally, I've found I have a real interest in Taxi and Exotic dancing, grioting, and mechanical/aerospace engineering. I cannot wait to learn about all of these within AP Physics C. My strengths include algebraic manipulation of numbers and a truly superior superior vena cava. I think I can certainly stand to improve my sink-throwing s

walsh416

walsh416

The physics behind a bicycle's drivetrain

A bicycle's drivetrain includes the pedals, cranks, bottom bracket, gear rings, chain, sprockets, freewheel, and derailleur. With all of those parts working in harmony, it takes the power provided by a human pedalling at 90rpm and uses it to turn a 27.75" diameter wheel at 20mph, all with an efficiency upwards of 95%. The drivetrain is, essentially, a system of levers and adjustable pulleys, working together to convert torques and forces. A typical crank is 175mm, measured from the center of

walsh416

walsh416

×
×
  • Create New...