# Don't Stop Me Now

• entries
29
28
• views
2,884

## Linear* Momentum of the Earth

P=MV Momentum of the Earth (Linear): Mass of the Earth: 5.972*10^24 kg  ;  the weight of the Earth is measured using the equation FG=(Gm1m2)/r2 taking an object that has mass and finding the force that the Earth exerts on it. Velocity of the Earth: 30000 m/s  ;  We find the velocity of the Earth by knowing that the Earth travels around the Sun in one year, now we only have to find how far it travels. We have to find the length of its ellipse around the sun, which is approximately

## Ferro Fluid

This is an example of how magnets can be used for levitation, or hovering if you will. All this is, is simply the force of the magnet overcoming the force of gravity of the magnet and the liquid. In this way, a "hover board" would be nothing other than a force keeping something off the ground, which is just what a normal force is when you have an object sitting on the floor. However, using magnets for levitation is cool because you cannot see the force acting on the object, and the force can als

## POLE VAULTING

Pole vaulting is a very good example of the transfer of momentum. You are transferring energy from running down the runway into bend in the pole, and then that pole rotates after you jump, making the pole push you vertically. As a pole vaulter myself, I can say it is not all that complicated, it does not require you to be a physics student to get over the bar. However, it is super fun! It must be flying in the air and feeling the push of the pole behind you as you kick your legs up, ho

## Elektrik

Personally I prefer building wall with working outlets and light switches over building a circuit in a lab, we do this in my Electric and Alternative Energy class. To me it just makes more sense, and I guess my time in physics is what gives me a good sense of how things like the electrical guts of a wall actually work. It seems like knowing how electrons flow through a system and through a switch is the basics for any circuit, functional or theoretical. However, I like that putting together a wa

## Levitating Animals

This is a video of a levitating frog. Apparently a 10 Tesla magnetic coil is being used to lift him. This is possible because pretty much all organisms have small amounts of ferromagnetic materials inside of them. And no this does not hurt the frog because the force is spread out over the entire body, but he is probably freaking out a little bit inside.

## \$1 Magnet vs \$700 Magnet

Some magnets are more, uh, magnetic than others?  Yes some magnets have a stronger magnetic force than others. Iron, nickel and cobalt atoms have more electrons orbiting in one direction than the other. This means they produce smaller currents like electromagnets. However, ferromagnetic metals like iron, nickel and cobalt like to line up into larger areas. These areas will line up, north to south like any other magnet if you put them in a strong magnetic field. You can even line up these ar

## Locker Shocker

Today at my locker, I took a stand against lockers everywhere. Every morning coming into school I visit my locker first thing to put away my jacket. I have been needing to wear a jacket for longer this year because of the ceaseless cold we've been having here in New York. To get to the point, I would come in from the cold wearing my jacket and go to my locker to put it away for the day. Like rubbing your socks on a carpet to induce a charge on yourself, the act of taking off my fleece jacket rub

## What's in a Name?

1 Gauss = Mx/cm2 = 10-4T = a guy = /gous/ noun, a unit of magnetic induction 1 Tesla = measurements for magnetic fields = 104G = the SI unit of magnetic flux density = another guy 1 Newton = who knows? Wow look, these units are all named after some cool science guys, this is concurrent with many other units; Ampere, Kelvin, Pascal, Coulomb, Watt, Volt(a), Ohm, Farad(ay), Weber, Joule, and of course the Becquerel named after none other than Antoine Henri Becquerel. Seems like

## Overheating

A common use of a brush motor is in a fan, for example the type that is used to keep my laptop from overheating. But what exactly is that preventing, and what does overheating do to a system such as a laptop? The fan helps to keep internal units cooled down, heat is created when there is resistance in the different hardware inside the computer. With all the units preforming very close to each other, a lot of heat can be generated. This is why keeping any appliance that generates a lot of re

## Electricity and You

What exactly happens when electricity flows through a person, how does it effect their body and how can these effects be measured? People are conductive, electricity will flow through a person if able, and can do harm to a persons body, including burns and upsetting the heart. Small enough voltages might not conduct through your skin, the most susceptible place on your body is probably your tongue.  In terms of Amps, 1 mA of current through your body would only cause tingling, but upwa

## Green

Green is my favorite color, here's why:  the frequency of green light is 526-606 THz(Terahertz) and it's wavelength is 495-570 nm In my opinion, green should replace yellow as a primary color, it is just so much better The colors displayed by your computer screen or TV are made of super tiny pixels made of 3 different colors, red GREEN and blue, hence RGB          VS     Seeing these colors very zoomed out(as your eye does) can make them seem like any other color on the s

## Hacky Sack

The game of Hacky Sack is a good one. Full of skill and such. The "footbag" itself goes through a lot of getting smacked around, flying through the air in parabolic arcs like any other projectile. The players in the game have to pretty much predict where the hacky sack is going to be when they hit it. Of course no one is going to set up an equation to see where the sack is and where it is going to be, that is absurd. Rather in this fast paced game players get used to the force they hit the sack

## "Semester Review"

My Semester Review Pledge to physics: I really think math is fun, it's like a puzzle, seriously no sarcasm here, I really enjoy taking math tests. They are surreal in a way, and I don't even know what surreal means, they just are and that sounds cool. But time goes by so fast and I just feel like super cool when I know what's going on, like we're speaking some secret code or something that only our class knows how to speak.  Now, I need to take that same fascination and put it into the

## Wisdom Teeth

I recently had my wisdom teeth removed, and it wasn't even the worst experience of my life, all thanks to the Novocain. My face was completely numb, couldn't feel a thing. It's not like I couldn't feel any forces though: I could tell that my cheek was being pulled to one side because my hole head felt the force of the pull, but I could not feel anything touching my cheek, an odd experience. And after the surgery I was touching my face a lot because touching your own face when it is numb is a ver

## Guitar Strings

My good ol' guitar has been getting out of tune recently, I think it's time for a restring. The strings were not strung in the best possible way to begin with so they have slowly over time been slipping out of the tuners. Even if the guitar is re-tuned, the strings will continue to slip more and more, so they need to be taken off and replaced. I have however been putting this off for a while, while the guitar is still playable it sounds not the best. The first time I restrung my guitar, I was tu

## Wendy's

I was at Wendy's today, getting a drink, from one of those fancy drink dispensers. It is amazing how there are so many flavors and types of drinks to choose from, a massive increase in choice from those old ones where you could choose from a variety of like ten drinks, now it's more like 100. The machines are very compact too, all the drinks are dispensed from the same exact place on the machine. The machine is coded itself to of course give you the drink of your desire, go on the menu and selec

## Breaking the Ice

I was going for a nice walk today, it was a bit cold, but it didn't bother me too much. And I didn't too much mind the somewhat cloudy sky, the sprinkled snow on the ground was a nice touch as well. At one point I came to a spot on the sidewalk where the ground beneath my feet was no longer cement, it was ice. BUT THIS, this was no fine smooth sheet of ice, this was a cracked earth beneath my feet. The first crackle that reached me made me believe that I had just found my way on

## Damage

You may have heard before that potential energy can be described as the amount of damage something can do. Mr. Powlin gave us the example last year of something with a greater mass or speed will do more 'damage'. It should be also noted that the area which is affected by the force will determine the 'damage' and the duration of the impact. Also how the force is distributed into the object receiving the force.  For example, a skier who weighs 150 lbs going 20 mph can lessen the damage of a f

## Engineering Design Process

The Engineering Design Process: The Engineering Design Process is designed itself to help outline how engineers (or anyone really) can solve a problem. We used this process when making the spinning tops in class, even if we did not know it at the time. Now let's go through it using the example of creating a spinning top, like we did in class.  We Defined the Problem when we were given instructions: make a top. We had already done Background Research when we were working on un

## Elevators are Evil

A friend of mine in AP physics 1 needed help on a web assign question in which a man's weight changed by .77 times after the elevator he was on started to accelerate. I explained to him how I would set up a system of equations where mg=weight(w) and the weight afterwards .77w=m(g+aelevator). And then set them equal: .77mg=m(g+a). m's cancel and then you solve for a getting a=2.254. A throw back to the test with that one SRQ with the guy pulling on the elevator, shows us that elevator problems pl

## The Weight of Air (and birds)

Commonly pondered question: How much does all the air on the Earth weigh? Make your predictions now: a) more than the Earth itself   0 kg, air weighs nothing, duh c) More than all the birds on Earth  d) 7.89 kg   One cubic meter (1000 liters) of air weighs 1.292 kg (so if you chose d you are probably already wrong) But that doesn't help us much, because as you go further up in the atmosphere, the density changes. The mass of the air is the same, but there is just less of

## Units and Vector Directions

In my previous post, I realize that I gave an incorrect answer to the solved problem. Not so much as incorrect, the number sure is right, but it is a vector (has magnitude and direction) and I treated it like a scalar (magnitude only), by leaving out direction. The answer should have been a=2.254 m/s2 downwards. Another thing I left out in the original answer was units, something that it is common for me to neglect or often mess up. Any time I am read a word problem for the first time I do what

Archery is pretty intense when you think about it with physics on the mind. There's tension in the string, aerodynamics (arrow dynamics), kinematics, oscillation, and probably a whole lot more things too. In archery there is this thing known as the "Archer's Paradox" which has to do with the oscillation of the arrow during it's flight.  As an arrow flies through the air, because of the flexibility of the arrow shaft, there is an oscillation that occurs. If the arrow were not flexible, if it

## I'm Having Such a Good Time

Wow, look at me, senior year in the supposed "hardest class in the school", I'm supposed to be the "best of the best", the "smart kid". Well maybe, that is a nice title, but I don't think so - I'm the same as everyone else, except at one point I missed the memo that school is hard. I never really noticed when it was that I started enjoying math and science, guess I just had nothing better to do. And those things are definitely my strong suit, but that's kinda boring to talk about. Other things I

## Infinity Miles per Hour

Can you travel at infinity miles per hour? Well, infinity isn't really a number so, probably not. But how fast could, we'll say a person, travel? I would say the speed of light is the fastest possibility, but let's start out a bit more realistic. Usain Bolt can run at 28 mph, but this is physics, so 12.5 m/s. Not a bad start. How about something faster, the fastest train is the Maglev, at 120 m/s. The fastest land vehicle - Thrust SSC at 341 m/s. The fastest speed by a manned vehicle was the Apo

×
×
• Create New...