Jump to content
Sign in to follow this  
  • entries
    14
  • comments
    19
  • views
    3,688

Field Hockey and Projectiles

kyraminchak12

624 views

During my junior year of high school, my 5th year playing field hockey, i made several connections with field hockey and physics, whether i wanted to or not. As center mid for my team, i am involved in almost every play, so i see in every way, shape and form how physics dictates the way the game is played. In our sectional game i had a beautiful aerial that went over everyone and straight into the circle where a teammate was and the play lead to a beautiful goal, which helped us with the game! Later i then realized that the aerial that i played was a perfect example of a projectile. Since the ball was only being impacted on by gravity it made it the perfect real life application to physics. The ball when i lifted it flew in a path of a parabolic arc due to the fact that it was sent into the air at an angle. This also means that the ball had the same speed the minute it left my stick to the moment just before it hit the ground. The fact that the ball also became a projectile the minute it left my stick means that the horizontal components and the vertical components are different, and only the time is transferable between the two. For example the acceleration of the vertical component of the ball was 9.81 m/s^2 where as the acceleration for the horizontal component of the ball was 0. This is due to the fact that the ball had no force pulling it horizontally, which meant that the horizontal speed remained constant, however, there was a force acting on the ball vertically, gravity, this then pulled at the ball with an acceleration of 9.81 m/s^2 increasing the velocity of the ball as it fell. Field Hockey is truly filled with physics, and the projectiles are just one small component of the sport.

  • Like 1


1 Comment


Recommended Comments

Field Hockey seems like a fun activity to participate in. It is cool how you were able to connect the ball to physics with it being a projectile and the different velocities and accelerations it experiences.

Share this comment


Link to comment
Guest
Add a comment...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

Terms of Use

The pages of APlusPhysics.com, Physics in Action podcasts, and other online media at this site are made available as a service to physics students, instructors, and others. Their use is encouraged and is free of charge. Teachers who wish to use materials either in a classroom demonstration format or as part of an interactive activity/lesson are granted permission (and encouraged) to do so. Linking to information on this site is allowed and encouraged, but content from APlusPhysics may not be made available elsewhere on the Internet without the author's written permission.

Copyright Notice

APlusPhysics.com, Silly Beagle Productions and Physics In Action materials are copyright protected and the author restricts their use to online usage through a live internet connection. Any downloading of files to other storage devices (hard drives, web servers, school servers, CDs, etc.) with the exception of Physics In Action podcast episodes is prohibited. The use of images, text and animations in other projects (including non-profit endeavors) is also prohibited. Requests for permission to use such material on other projects may be submitted in writing to info@aplusphysics.com. Licensing of the content of APlusPhysics.com for other uses may be considered in the future.

×
×
  • Create New...