Jump to content
  • entries
    15
  • comments
    10
  • views
    6,442

Fun Experiments for the winter time!


moritz.zoechling

915 views

Are you tired of being trapped inside all day during the winter? Sledding and building snowmen gets boring? Well than I have some replay good experiments for you for these cold winter days!

1) Turn Boiling Water Into Ice In The Blink Of An Eye

In the last couple weeks, it became a sensation to throw boiling water out into the freezing air and watch the water freeze before it even hits the ground. How is this possible?

First of all, the air needs to be extremely cold and dry in order for this to be successful, around -30 degrees Celsius (-22 degrees Fahrenheit) which we almost had this week in Rochester.

This alters the density of the air, which doesn’t allow it to hold much moisture. The boiling water, on the other hand, eagerly offers up water vapor. Throwing the water into the air exponentially increases the surface area, allowing more water vapor to escape. The air can’t hold this moisture, so the vapor is quickly cooled and condensed. The water sticks to particles in the air to form the nucleus of a snowflake as it freezes.

2) Frozen Bubbles

Blowing bubbles is always a good time, and they get to be even more fun when they are frozen! Head outside to blow your bubble and watch the fractals cover the surface as the bubble freezes. If they freeze in the air, they’ll break as soon as they land. To marvel at your bubbles for even longer, blow them close to the snow, and allow them to freeze on the ground.

You can use pre-made bubble solution or make your own by mixing one part water with four parts soap (dish soap works very well, though shampoo could also be used). If you want to make the bubbles more durable, add in a small amount of glycerin or light corn syrup. Creating tougher bubbles will improve your chances of getting to pick the bubble up and getting a closer look after it is frozen.

3) Inflating Balloons

This is a fun exercise in exploring the relationship between the volume and temperature of a gas. Inflate a balloon inside your home (which is hopefully considerably warmer than the outdoors) and tie off the end. Take the balloon outside, and watch the balloon slowly deflate as the gas becomes colder. Bringing the balloon back inside and allowing the gas to become re-heated to its original temperature will re-inflate the balloon.

This phenomenon is due to Charles’ Law, which describes the relationship between the volume and temperature of a gas. As the temperature of the gas inside the balloon decreases from the frigid air, the volume also decreases in order to maintain the pressure of the gas. As the volume of the gas shrinks and becomes more dense, it doesn’t put as much pressure on the sides of the balloon, causing it to deflate. Once the balloon is back indoors, the temperature of the gas will increase, which increases the volume of the gas, and then pushes and stretches the balloon. Though the container and pressure of the gas inside never changed, you are able to manipulate the volume by changing the temperature.

To make this activity even more fun for kids, you can draw on the balloon to see how much the picture changes as the balloon deflates. You could also try inflating the balloon outside (though good luck tying it off with cold fingers!) and bringing it inside to see how much bigger it can get before it pops.

2 Comments


Recommended Comments

Guest
Add a comment...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

×
×
  • Create New...