Jump to content
Sign in to follow this  
  • entries
    15
  • comments
    10
  • views
    5,273

Aerodynamics on Formula 1 Race Cars

moritz.zoechling

563 views

The principles which allow a Formula 1 car to move are the same that cause an aircraft to fly. The only difference being the wing or airfoil shape is that the airfoil shape will create an upside down producing downforce instead of lift. The Bernoulli Effect means that: if a fluid (gas or liquid) flows around an object at different speeds, the slower moving fluid will exert more pressure than the faster moving fluid on the object. You have probably all heard about that before or seen it on a physics show on the TV, explained in a simpler form. So then the object will be forced toward the faster moving fluid. The wing of an airplane is shaped so that the air moving over the top of the wing moves faster than the air beneath it. Since the air pressure under the wing is greater than that above the wing, lift is produced. The shape of the f1 car uses the same principle. The shape of the chasis is similar to an upside down airfoil. The air moving under the car moves faster than that above it, creating downforce or negative lift on the car. Airfoils or wings are also used in the front and rear of the car in an effort to generate more downforce. Downforce is necessary in maintaining high speeds through the corners and forces the car to the track. Light planes can take off at slower speeds than a ground effects race car can generate on the track. In addition the shape of the underbody (an inverted wing) creates an area of low pressure between the bottom of the car and the racing surface. This sucks the car to road which results in higher cornering speeds which is very important as they are traveling at 200mph. In the last couple years it became really important to have excellent aerodynamics in order to have a chance to compete. Teams that plan on staying competitive use track testing and wind tunnels to develop the most efficient aerodynamic design.

Here are also two videos which explain it again. Once by an expert and in the second video by Niko Roseberg, a german f1 race car driver is explaining how the aerodynamics on f1 race cars work.



0 Comments


Recommended Comments

There are no comments to display.

Guest
Add a comment...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

Terms of Use

The pages of APlusPhysics.com, Physics in Action podcasts, and other online media at this site are made available as a service to physics students, instructors, and others. Their use is encouraged and is free of charge. Teachers who wish to use materials either in a classroom demonstration format or as part of an interactive activity/lesson are granted permission (and encouraged) to do so. Linking to information on this site is allowed and encouraged, but content from APlusPhysics may not be made available elsewhere on the Internet without the author's written permission.

Copyright Notice

APlusPhysics.com, Silly Beagle Productions and Physics In Action materials are copyright protected and the author restricts their use to online usage through a live internet connection. Any downloading of files to other storage devices (hard drives, web servers, school servers, CDs, etc.) with the exception of Physics In Action podcast episodes is prohibited. The use of images, text and animations in other projects (including non-profit endeavors) is also prohibited. Requests for permission to use such material on other projects may be submitted in writing to info@aplusphysics.com. Licensing of the content of APlusPhysics.com for other uses may be considered in the future.

×
×
  • Create New...