Jump to content
Sign in to follow this  
  • entries
    30
  • comments
    7
  • views
    12,358

The Big Bang Theory Season 3 Episode 10: "The Gorilla Experiment"

Rshadler

663 views

Yes, I'm adding another show! The other day I was watching a newer episode of the Big Bang Theory when I realized that there could be some good things to talk about in this show. After a bit a research, I was definitely right about that.

So let's start here:

So, Sheldon- a super smart astrophysicist- is trying to teach Penny- an average human with no knowledge of physics- about some basic physics concepts.

One such concept is Newton's equations for gravity and gravitational force, or Newton's Law for Universal Gravitation. I should start this by saying that he his referring objects falling a vacuum, not in regular space. The equation he writes on the board is Fg=(GMm)/(r2), where G= universal gravitation constant (6.67x10-11), M=mass of the planet, m=mass of the object, and r=radius of orbit. We also know from Newton's Second Law that Fg=ma, where m=mass of the object and a=acceleration of the object. Setting those equal to one another, since both are equation to Fg, yields the following.

(GMm)/(r2)= ma => a=(GM)/(r2) => a=g

But wait, there's more! Another known concept is that g= (GM)/(r2), where g is the acceleration due to gravity on a given planet (usually Earth). So lets add that above (see the bold letters).

Once he works this out, Sheldon asks Penny what this means we know. For one, it means that the object is accelerating towards the planet's center of gravity (downward) since it is being acted on by the force of the planets gravitational field. It also means that the object is accelerating due to the force of gravity of the planet it is on or above and that this acceleration is uninterrupted. If a=g exactly there are no other forces on the object as it accelerates. An force in the upward direction (opposite the acceleration) would slow down (decrease) the acceleration of the object and added downward force would increase. Therefore if a=g, there is no other forces besides the force of gravity acting on the object. This can happen because the object is considered to falling in vacuum, which means that mass and size don't affect acceleration, there are no other forces acting on the object and thus a=g is possible.

Ok! So there's some pretty neat, albeit basic, uses for some of Sir Isaac Newton's laws. Other than that, enjoy the rest of the clip (its quite funny) and thanks for reading!



0 Comments


Recommended Comments

There are no comments to display.

Guest
Add a comment...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

Terms of Use

The pages of APlusPhysics.com, Physics in Action podcasts, and other online media at this site are made available as a service to physics students, instructors, and others. Their use is encouraged and is free of charge. Teachers who wish to use materials either in a classroom demonstration format or as part of an interactive activity/lesson are granted permission (and encouraged) to do so. Linking to information on this site is allowed and encouraged, but content from APlusPhysics may not be made available elsewhere on the Internet without the author's written permission.

Copyright Notice

APlusPhysics.com, Silly Beagle Productions and Physics In Action materials are copyright protected and the author restricts their use to online usage through a live internet connection. Any downloading of files to other storage devices (hard drives, web servers, school servers, CDs, etc.) with the exception of Physics In Action podcast episodes is prohibited. The use of images, text and animations in other projects (including non-profit endeavors) is also prohibited. Requests for permission to use such material on other projects may be submitted in writing to info@aplusphysics.com. Licensing of the content of APlusPhysics.com for other uses may be considered in the future.

×
×
  • Create New...