Jump to content
  • entries
  • comments
  • views

The Observer Effect



In Physics last year, we watched a video regarding quantum physics, since the topic was so new to any of us. In this bizarre video, I remember being perplexed by a phenomenon known as the observer effect. As I listened to the video explain how observation of a system affects the system itself, I began imagining living particles watching for human observation in order to change their behavior... It really blew me away.

The Observer Effect, in its basic form, is when changes in observation of a system cause changes in the phenomenon being observed. How, you may say, can observing a system change the system itself? In its most basic form, the observer effect can be observed (no pun intended) when one checks the pressure on a tire, since it is difficult to do so without releasing some air and therefore changing the system.

On the particle level, electrons are often observed for data in physics. Electrons are detectable only when they interact with a photon, which would cause the electron to defer from its original path. The scientist will then never know what the electrons true, intended path was.

Quantum Mechanics is where the observer effect starts to get complicated. The Quantum Zeno Effect, or the Turing Paradox, can be linked back to the observer effect. This states that a quantum system left unobserved will decay, while a quantum system under continuous observation will never decay; the evolution of the system is "frozen" because it is observed frequently enough in its initial state. Each measurement causes a wavefunction collapse, freezing that measurement in time. In such cases, even a microscopic piece of observation technology performs and is recognized as an "observer", making it difficult to take outside involvement out of quantum measurements.

The Observer Effect is often confused with another concept called the Uncertainty Principle, which I will discuss at a later time.

Quantum mechanics is a messy world compared to Newtonian physics, and the observer effect does not make it any easier. There is still much to be learned about quantum systems and their reactions to outlying stimulus. To believe this all stems back from a short video junior year! Until next time, Fizzix community, until next time.


Recommended Comments

There are no comments to display.

Add a comment...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Create New...