Jump to content
  • entries
    30
  • comments
    8
  • views
    8,687

Potato Battery


Justin Gallagher

735 views

potato-battery-02.jpg

Building a potato (or lemon or apple) battery reveals a bit about the inner workings of electrical circuits. To do this simple science experiment, you insert two different metallic objects often a galvanized (zinc-coated) nail and a copper penny into the potato, and connect wires to each object with alligator clips. These wires can be attached either to the two terminals of a multimeter (which measures a circuit's voltage) or to something like a digital clock or lightbulb. (It may take two or three potatoes wired in series to generate enough voltage to power those devices.)

The potato acts like a battery, generating a current of electrons that flow through the wire. This happens because acid in the potato induces a chemical change in the zinc that coats the nail. The acid acts as an "electrolyte," ionizing the zinc atoms by stripping two electrons from each of them and leaving them positively charged. Those electrons are conducted away from the zinc ions through the wire and through whatever devices lie along the circuit and end up at the copper penny. From there, they join up with positive hydrogen ions in the potato starch that have been repelled there by the nearby zinc ions. The movement of these electrons is enough to power a toy clock or light bulb.

0 Comments


Recommended Comments

There are no comments to display.

Guest
Add a comment...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

×
×
  • Create New...