Jump to content
  • entries
  • comments
  • views

Steph Curry's Jump Shot



Stephen Curry, a professional basketball player on the Golden State Warriors, is no doubt one of the greatest shooters of all time. Naturally, there is plenty of physics behind his sweet stroke. In this blog I will analyze different components of physics that relate to his game with the help from ESPN's Sports Science video on him. 

First off, Stephen Curry runs down the court at 10 mph (about 4.4 m/s) and can stop on a dime in approximately 1/3 of a second. This the implies that the deceleration of Curry when he gets set for a shot is 13.333 m/s/s. Because Curry has 87 kg of mass, a 1160 N force is required for Curry to make this stop. This means that this force is being applied to Curry's shoes as a force of friction by the ground and onto his legs. Furthermore, Curry shoots the ball, on average, at an angle of 55 degrees. Opposed to an average trajectory of 45 degrees by a taller player, Curry's higher arcing shot allows for him to shoot over taller defenders. Furthermore, his ball has a smaller initial horizontal velocity because it is in the air longer. Lastly, this higher arc increases the area in which the ball can go in by 19%! 

Lastly, Curry's release is wicked fast. On average the ball leaves his hand in .4s. This is the same time it takes the ball to undergo one full rotation, which implies the angular speed of the ball is 15.7 rad/s. To give a comparison, the average release time is .54s; Curry's crazy fast release is what makes him great. 



Recommended Comments

There are no comments to display.

Add a comment...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Create New...