Jump to content
  • entries
    30
  • comments
    23
  • views
    4,053

Transparent Displays


VagueIncentive

1,050 views

We spend many hours every day looking at some sort of display, whether it be attached to a computer, phone, TV, or maybe even a car. These displays work on a relatively simple concept of using liquid crystals that change the color of the light that is provided by the backlight, which is usually white. This tech has replaced the old CRT (cathode ray tube) technology that shot electrons at a screen over and over scanning across to form the image. The next innovation in display tech is hopefully something like what Iron Man has in his suit, a type of transparent display. The current tech used would work somewhat as a transparent display, but the colors would be affected by whatever light is behind them, as no light is being produced by the display, only altered. This is where OLED (organic light emitting diodes) come into play, as they are one of the newest type of display technology, and they create their own light. This means that the colors you see are being produced pixel by pixel, rather than a white light being altered pixel by pixel. This also allows for better contrast, as each individual pixel can turn off, making the display capable of having true black rather than a sort of blocked backlight. This tech also allows for flexible and more varieties of displays, which are already being used in some TV's today.

4 Comments


Recommended Comments

10 minutes ago, SgtLongcoat said:

My only question: How does the screen realign the liquid crystal such that it can actually produce the proper color?

Each pixel has 3 color filters in front of the backlight, electricity applied to the liquid determines it's opacity, and therefore how much of light goes through the color filter. Essentially, the liquid crystal can be controlled as to how much light is let through, and the 3 different color filters allow the pixel to assume a large array of different colors. Calculators use LCD displays, but without a backlight or any color filters, and only have 2 states for the crystal, fully opaque or fully transparent.

Link to comment
20 hours ago, VagueIncentive said:

Each pixel has 3 color filters in front of the backlight, electricity applied to the liquid determines it's opacity, and therefore how much of light goes through the color filter. Essentially, the liquid crystal can be controlled as to how much light is let through, and the 3 different color filters allow the pixel to assume a large array of different colors. Calculators use LCD displays, but without a backlight or any color filters, and only have 2 states for the crystal, fully opaque or fully transparent.

So then, the type of display found in calculators would rely on the reflection of outside light to actually display stuff, right?

Link to comment
36 minutes ago, SgtLongcoat said:

So then, the type of display found in calculators would rely on the reflection of outside light to actually display stuff, right?

It's the exact same thing, which is why a lot of watches have a light button that is a temporary backlight

Link to comment
Guest
Add a comment...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

×
×
  • Create New...