Jump to content
  • entries
    28
  • comments
    25
  • views
    3,295

Spinning Top


MyloXyloto

427 views

On Monday we were given a problem: Make a spinning top.  We had two paper plates, six pennies, a sharpened pencil, and some tape.  With no further instructions given, we were left to our own devices to solve the problem.  Though I cannot speak for my partner, I can say that I was not thinking of the engineering design process at the time.  However, the engineering design process was precisely how we were going about our task.  We had a problem to solve and we began by constructing our solution.  We taped the six evenly spaced pennies to the outside of one plate, then put the other plate on top.  We poked the pencil through (roughly) the center of the plates.  Then, we tried testing our results.  When it didn't work perfectly the first time, we made adjustments.  We would try placing our mass at different heights on the pencil.  We found that it worked the best when it was lower.  However, we did not pick up that we should have snapped the pencil in half to make the top more stable.  We learned this after.  Moment of inertia was crucial in this lab because a higher moment of inertia would mean the top would have greater angular momentum.  Increased angular momentum would mean that the top would be more resistant to change in its rotational motion and stay spinning longer.  We tried to maximize the moment of inertia of the top by placing the mass (the pennies) by the edge of the plate.  This way, the radius was greater.

0 Comments


Recommended Comments

There are no comments to display.

Guest
Add a comment...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

×
×
  • Create New...