Jump to content
Sign in to follow this  
  • entries
    30
  • comments
    17
  • views
    1,623

Winter physics 2018: Luge

Sign in to follow this  
AaronSwims

230 views

The 2018 winter Olympic games begin in less than a month on Friday, February 9th in Pyeongchang, South Korea. Though I do prefer the events of the summer games, I will have to wait till Tokyo 2020. However, the winter games still has athletes who use physics in order to bring home the gold. In this post I am focusing on a weird but fun event to watch: Luge. In luge, the athlete must try to travel down a track in the least amount of time in order to win. This is where it gets interesting. After a the athlete creates their initial velocity by moving themselves back and fourth with handles at the start, the only force acting on the Luger which could increase speed. However, it is not so simple as the Luger must fight the friction on the ice from their sled blades and the drag forces of earth's atmosphere. The drag force on a Luger can be calculated by: Fd= .5CpAv2 where C is the drag coefficient (typically ranging from .4 to 1), p is the density of air, A is the frontal area, and v is the velocity of the luger. Minimizing drag increases the luger's speed so they minimize the variables they can. Luger's lay nearly flat on their sleds with pointed toes to create the least possible frontal area. If they didn't have to look up to see where to go, the luger could lay completely flat, but we haven't yet strapped cameras to these people and had video play in their helmets. Go USA! Next, there are two parts of the track, straight and banked turns. While on the straight part of the track, the luger can lay flat, however he must look up to steer on the turns. When going around the turns, the luger expireinces a centriptal acceleration. With speeds reaching 140 km/h, and a turn with a radius of 30.9m, a luger can feel up to 5g's of centripital acceleration.

Sign in to follow this  


0 Comments


Recommended Comments

There are no comments to display.

Guest
Add a comment...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

Terms of Use

The pages of APlusPhysics.com, Physics in Action podcasts, and other online media at this site are made available as a service to physics students, instructors, and others. Their use is encouraged and is free of charge. Teachers who wish to use materials either in a classroom demonstration format or as part of an interactive activity/lesson are granted permission (and encouraged) to do so. Linking to information on this site is allowed and encouraged, but content from APlusPhysics may not be made available elsewhere on the Internet without the author's written permission.

Copyright Notice

APlusPhysics.com, Silly Beagle Productions and Physics In Action materials are copyright protected and the author restricts their use to online usage through a live internet connection. Any downloading of files to other storage devices (hard drives, web servers, school servers, CDs, etc.) with the exception of Physics In Action podcast episodes is prohibited. The use of images, text and animations in other projects (including non-profit endeavors) is also prohibited. Requests for permission to use such material on other projects may be submitted in writing to info@aplusphysics.com. Licensing of the content of APlusPhysics.com for other uses may be considered in the future.

×
×
  • Create New...