Jump to content
Sign in to follow this  
  • entries
    30
  • comments
    30
  • views
    1,996

Bowling Ball vs. Trampoline

Sign in to follow this  
krdavis18

349 views

Have you ever wondered what it would take to break a trampoline? Well in a video from How Ridiculous the YouTubers explored which would prevail a bowling ball or a trampoline. The video is pretty cool to watch and they do some fun shots in slow motion too. However, there is also a lot you can learn from their experiment. 

You can analyze the velocity of the bowling ball as it hits the trampoline using physics to find that its final velocity is 29.7 m/s. You can also analyze the forces acting on the trampoline using Hooke's Law. Hooke's Law proves why the bowling ball goes so high on the last drop shown in the video in which they added several golf balls and an additional bowling ball to the trampoline. According to Hooke's Law, F=-kx the heavier the force on the trampoline, the longer the springs extend. Thus the dropped bowling ball is propelled back into the air with a greater force and can reach a greater height. 

In another video, they also dropped watermelons and a large block of ice on the trampoline, and the trampoline still prevailed. However, you can begin to see the springs being stretched to their breaking point when they dropped the ice block from 45m. I think it will be interesting to discover what object will finally cut through the trampoline. 

 

Sign in to follow this  


0 Comments


Recommended Comments

There are no comments to display.

Guest
Add a comment...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

Terms of Use

The pages of APlusPhysics.com, Physics in Action podcasts, and other online media at this site are made available as a service to physics students, instructors, and others. Their use is encouraged and is free of charge. Teachers who wish to use materials either in a classroom demonstration format or as part of an interactive activity/lesson are granted permission (and encouraged) to do so. Linking to information on this site is allowed and encouraged, but content from APlusPhysics may not be made available elsewhere on the Internet without the author's written permission.

Copyright Notice

APlusPhysics.com, Silly Beagle Productions and Physics In Action materials are copyright protected and the author restricts their use to online usage through a live internet connection. Any downloading of files to other storage devices (hard drives, web servers, school servers, CDs, etc.) with the exception of Physics In Action podcast episodes is prohibited. The use of images, text and animations in other projects (including non-profit endeavors) is also prohibited. Requests for permission to use such material on other projects may be submitted in writing to info@aplusphysics.com. Licensing of the content of APlusPhysics.com for other uses may be considered in the future.

×
×
  • Create New...