Jump to content

Blog bdavis

Sign in to follow this  
  • entries
    42
  • comments
    32
  • views
    8,895

Empire state building physics

Sign in to follow this  
bdavis

2,488 views

i have always been curious how it would be to drop an object from the top of the empire state building. It is obviously a long way down but exactly how fast would an object be traveling once it hit the ground? If i were to drop a golf ball for example, how fast would that travel? Well we can do this using my knowledge of one dimensional motion, a key physics concept. Acceleration due to gravity is -9.81 m/s for any object no matter the mass. Using our kinematic equations we can find out the final velocity any object will attain once it reaches the bottom of the Empire State building. The height of the empire state building is 443 meters tall. That will be our delta Y. Our acceleration is gravity which is -9.81 m/s. Our initial velocity is 0 m/s because we are dropping it from rest. We don't need the time in order to find the final velocity so we will use the equation Vf^2=Vo^2 + 2ay. That will be Vf^2=0 + 2(-9.8)(-443). Vf=93.18 m/s. That would be really fast and could seriously hurt someone. That is really cool!

Sign in to follow this  


2 Comments


Recommended Comments

I concur with Joe. Air Resistance would significantly slow down the golf ball. Although I still wouldn't want to be hit with the golf ball

Share this comment


Link to comment
Guest
Add a comment...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

Terms of Use

The pages of APlusPhysics.com, Physics in Action podcasts, and other online media at this site are made available as a service to physics students, instructors, and others. Their use is encouraged and is free of charge. Teachers who wish to use materials either in a classroom demonstration format or as part of an interactive activity/lesson are granted permission (and encouraged) to do so. Linking to information on this site is allowed and encouraged, but content from APlusPhysics may not be made available elsewhere on the Internet without the author's written permission.

Copyright Notice

APlusPhysics.com, Silly Beagle Productions and Physics In Action materials are copyright protected and the author restricts their use to online usage through a live internet connection. Any downloading of files to other storage devices (hard drives, web servers, school servers, CDs, etc.) with the exception of Physics In Action podcast episodes is prohibited. The use of images, text and animations in other projects (including non-profit endeavors) is also prohibited. Requests for permission to use such material on other projects may be submitted in writing to info@aplusphysics.com. Licensing of the content of APlusPhysics.com for other uses may be considered in the future.

×
×
  • Create New...