Jump to content

Leaderboard


Popular Content

Showing content with the highest reputation since 11/14/2010 in all areas

  1. 3 points
    Last weekend I crossed the border into Toronto, Canada for a "girls weekend" with my mom and sister. Our main purpose of going there was for a yoga convention for all the yogies of the world. While at this convention, we of course experienced tons of physics! When doing different yoga poses, we experienced the great phenomenon-gravity- at work. When "ohming" or saying "namaste" we experienced sound waves, and the vibration they produced so that we could here them. But when we weren't doing yoga, we somehow still experienced physics! By dropping tons of money at the 3-story mall, The Eaton Centre, we experienced the force that our heavy shopping bags created on our arms. When taking the elevator to a new floor of designer stores, we experienced physics there and how we felt heavier when going up, but lighter when going down due to acceleration. We lastly saw physics when we hit the pool/hot tub in our wonderful hotel. The jets pushed water out creating different waves or bubbles. We also created waves by jumping into the pool. Depending on the type of jump or how hard it was, the amplitude changed all the while carrying the energy we put forth by jumping in. This weekend adventure was full of physics just like everything else!
  2. 2 points
    I played dodgeball too!
  3. 2 points
    The reason why you get shocked more in the winter is because everyone has their heaters on which draws the moisture out of the air which causes the charges to build up and cling to us more since there is less moisture in the air.
  4. 2 points
    ...(But probably not.) In light of the holiday season, I bring to you a Christmas-themed blog post, with a pinch of love and some hints of gravitation. I came home from school today and stepped into the living room, astutely noticing that the Christmas tree had fallen. Obviously, the first thing that ran through my mind was that gravity did this. I mean, gravity's everywhere - it's a pretty likely culprit. You may or may not notice the lamp just above where the tree fell, but I believe it to be of great importance in this investigation. I have deduced that, at any time from 10:00 AM to 2:00 PM on Tuesday, December 16, the gravitational attraction between the tree and lamp created a gravitational orbit that forced the tree out of its holder, and onto the cold ground. Let's take a look. First off, the tree had to begin in static equilibrium - it was still at first. Due to Newton's first law, an outside force had to act upon this tree, and I do believe that the placement of the lamp near this tree provided an IMMENSE GRAVITATIONAL FORCE. So let's dive in. We know that the magnitude of this force is given by GMm/r^2, where G is a constant, M is the tree, m is the lamp, and r is the distance between the two. G = 6.67E-11 Nm^2/kg^2, we know this. The average mass in kilograms for a Christmas tree is about 70 pounds at this height of tree, or 31.75 kg. The mass of the lamp is about 8 pounds, or 3.63 kg. I can already see this force is about to be massive. And the distance between the center of mass of the tree and lamp? About 5.5 feet, or 1.68 meters. Time to calculate. F = [(6.67E-11 Nm^2/kg^2)(31.75 kg)(3.63kg)]/((1.68m)^2) Therefore, the force due to gravity is a whopping 2.72 NANONEWTONS. This incredibly large force undoubtedly caused the displacement of the tree; therefore, gravity ruined Christmas. You may be subconsciously pointing out the holes in my story, like how did a gravitational orbit just occur if the lamp was there the whole time, or perhaps just pointing out the fact that two objects on Earth will likely only apply negligible forces to each other. Fair enough, but keep in mind that there is absolutely no other worldly explanation for this phenomenon. So it's either gravity, or ghosts. You decide. Or maybe the cat just knocked it over.
  5. 2 points
    Physics is involved in pretty much everything in life. Throughout my school day I experience all kinds of physics. First period I have Italian where I sit down (along with the rest of my classes) and I am applying a force to the chair and the chair is applying a force to me because of Newtons third law. Second period when I get my math test score back I hit my head against the desk which is also applying a force to the desk and the desk applies one right back. Third period is art class where I gravity is pushing my eyelids down while I struggle to stay awake. Fourth period is APUSH which could be compared to a black hole. Black holes have tons to do with physics. A black hole is a point in space with so much gravity that not even light can escape and that is most definitely APUSH... Fifth and 6th periods are the best of the day because I do not have classes these periods so I can do my homework. Seventh period is English where I push down on my pencil and it leaves a mark on the many papers I have to write. Gravity also pushes down on that pencil. Eighth period could be the first period of a double for physics or if I am lucky its gym. In gym there is so much physics. A ball is thrown and is a projectile motion. Gravity acts on the ball at all times. If were running in gym we push down on the ground with our legs and the ground pushes us back allowing us to run. And then ninth period, well there is too much physics in a physics class to list. Tons of gravity throughout the day and tons of newtons laws. Crazy..
  6. 2 points
    So if you haven't heard, a rocket that was supposed to bring supplies to the International Space Station (ISS) exploded on October 28. Here's a short article and video talking about it: http://www.wired.com/2014/10/antares-rocket-explosion/. Obviously, this kind of sucks. The rocket cost about $200 million and now most of the supplies won't make it to the ISS. However, explosions are still really fun to watch, especially one that big and I don't feel bad saying that since the rocket was unmanned. Also interesting is that the rocket was made by Orbital Science, under contract of NASA. This shows that the space industry is slowly because more of a private industry with Orbital Science and SpaceX leading the way at the moment. They aren't sure exactly what caused the rocket to fail, but the actual explosion was caused by the self-destruct being purposefully activated. The real problem was right when it fired its first stage - you can kind of see this in the video. As soon as this problem was noticed, it was decided to destroy the rocket before it reached a populated area and could potentially cause damage. Any number of factors can mess up a rocket launch; there are a lot of variables. Wind speed and direction, an area clear of people, weather, calculations, etc. I think the biggest things I learned from this are that those errors we usually don't account for in our physics labs (FRICTION!!) matter a lot in the real world, and that we still have not perfected going to space. I'm excited for space tourism anyway.
  7. 2 points
    So are you saying that in one of these dimensions you're actually good at super Mario??. Fascinating stuff Jake, and don't go putting your cats in radioactive boxes, alright big guy?
  8. 2 points
    Hello, my name is Max and I'm a senior in high school. Since everyone else is talking about the sports they play...I will too. My mother often asks me to stop playing tennis because it is such a physical sport, but I rarely listen to her so I continue to play at a varsity level. I can't have any pets except a boring fish because my dad is allergic to the fur on cats and dogs. At the moment I work at a restaurant called Hose 22 and I usually prepare food. I'm taking physics because it was recommended to me by my counselor. But I am excited to start physics because it looks like its going to be very different from all the other science classes. I also really want to learn more about the different forces that can act on objects.
  9. 2 points
    Jelliott, I can really relate to your analogies. I too wish to become a beautiful butterfly, to grow and grow until I burst with knowledge. although I find some of your post humorous as intended, I think you struck on very important ideas. I think hard problems can be torture but on the other hand, that makes them that much more rewarding when completed.
  10. 2 points
    If you wanted to, you can change your name and remove your last name in the settings! Enjoy physics!!
  11. 2 points
    Maybe I'll write a post just about cows...*suspense*
  12. 2 points
    Sweet blog post. If you wouldn't mind spreading the love and also buying your two student teachers silver Porsches, we wouldn't complain
  13. 2 points
    Soooo, because this is my last blog post for this year ( ), I thought it would be fitting to do a course reflection on the AP-C physics class this year. I thought I'd do it in a "bests-vs-worsts" top 5 format, kind of like you could find on collegeprowler.com when viewing different schools. Top 5 Bests: 5.) Blog Posting [i thought this was really fun! I've never done anything like this before for a class. It brought up interesting physics applications and I thought it was fun to converse with classmates on the site ] 4.) Independent Units [As uncomfortable as I was at first, independent units forced me to manage my time, work harder than usual to learn the topic, and was great preparation for college. I feel like everyone sould experience this kind of a unit before graduating] 3.) Assigned practice problems from the readings [Assigned problems were REALLY helpful. I would've struggled a lot more than I did had I skipped doing the sample problems] 2.) Units with Lecture & book follow-up [This is my favorite way to learn things! The read-then-lecture method] 1.) VIDEOS <3 [Hands down the most helpful resource in Physics] Top 5 Worsts: ...I think this is my biggest beef. I really don't have 5 things to complain about. 1.) Readings weren't assigned [When life gets busy in the middle of the year, especially with a number of APs, sports, etc., readings are the first thing to get cut out for me if they're not assigned. Confession: when the going got tough, I would often skim or not read. I reccomend assigning readings in the future. Kids will complain, but they'll thank you when they see better grades and their AP score.] Overall, this was a successful year. A note to future students: This is by far the hardest AP course I've taken throughout high school. If you want to succeed, you must: A.) Read the textbook and do some practice problems B.) WATCH THE VIDEOS. Whether you're confused or simply want review, these are soooo outrageously helpful. It's like being in class a second time, except in 15 minutes or less instead of 42. Plus, you can skip over any sections that you feel you know solid. C.) REVIEW THE EQUATIONS AND FREE RESPONSE BEFORE THE AP. I went through most of the E&M free response questions as well as both E&M and mechanics equations before the exam. KNOW THE EQUATIONS! I swear equations and key concepts are the majority of the test when it comes to the multiple choice Qs. Any favorite parts of the year? Things you wanted to change? Post below with your opinion! ...I can't believe we only have 1 more day of physics
  14. 2 points
    PCX is a workout area that I participate at weekly with my volleyball team. We go on tuesday nights to exercise as a team. I realized while watching videos that i recorded of the exercise's how much physics was applied into each activity. The vertamax that we use for jump training is full of physics. When you use the vertamax you put on a belt with two clips on either side of your hips. You then stand ontop of the vertamax (a square flat surface) and then attach the clips to different color resistance bands. With the vertamax at PCX you can either choose to use it for jump training or leg strength by making the bands go parallel to the floor instead of perpendicular. Once cliped into the machine we are told to jump and go for maximun height. The force of the resistance bands pulls us toward the ground and makes us work harder to get higher into the air. Once we are done useing the clips we unclip the bands and then jump without resistance and analyze the height difference. The jacobs ladder is another machine that we utalize on a weekly basis. Similar to the vertamax you belt yourself into this machine and then "climb the ladder." You can control the speed of the machine with how much force you put into it. If you are working hard and pushing yourself and the machine then the output on the machine will mirror your work and move faster to challenge you. The machine is inclined at a angle so as to simulate climbing up a ladder type object The angle that it is inclined to makes it more difficult to climb. The Pull up bar is also full of physics. With three reps of eight pull ups my team is challenged to bring their entire bodies up into the air transitioning from potential energy into kinetic. We are given band to put our feet into for extra support. The rubberband like bands expand and retract to help differ our weight. The sled is yet another item that we use to work out. Notice this is not your typical snow sled. This sled is a black device that you put weights on inorder to work your legs and arms. Having the sled on the turf surface creates more surface tention and therefore more work to be done by my teamates. There are two different holds that we can choose from when using the sled. The two different holds are all about angles. The higher of the two is easier because you are able to use the machine against itself to push it across the turf. The lower of the holds means that the players body is parallel to the ground and very close to it. The force that it takes to push your legs and arms together to get the seld across the turf is increased from the higher angle hold. Basically every tuesday i have extra amounts of physics added to my day!
  15. 2 points
    My childhood, like many others, was spent watching many Disney Movies. One of my all time favorites was the Lion King- I never grew tired of it. One scene that always sticks in my mind is that once music number of young Simba and Nala and, of course, the scene of Mufasa's Death. (0:49-1:20) It can usually bring tears to even the toughest of teens, yes? As a child, this scene really never bothered me and, now, this sad scene seems to bother me so much more. Mufasa died a heroic, and untimedly, death by saving his only son. However, we should move onto the Physics now. How accurate is Mufasa's death, exactly? Could a fall from that height really kill an adult male lion? How far did he fall, anyway? It's very hard to tell but, after reviewing this scene many times I feel I can give a good shot at answering these questions. From what I can tell, Mufasa's fall lasted roughly 5 seconds (1:07-1:12ish), and started from rest before... Scar decided to be a jerk and condemn Mufasa to death. So, using the equation d=vit+(1/2)at2, knowing his falling time was 5 seconds, he started from rest, and acceleration due to gravity is 9.81m/s2; It can be estimated that Simba's father fell about 123 meters. While he seemes to be fairly high before he fell, I highly doubt that the the distance (vaguely seen at 0:50) was taller than the Statue of Liberty. Obviously, it makes sense why a Disney movie would over exaggerate the death of a character, and not care about making the Physics of a children's movie accurate. While real Lions are tough and resiliant, a fall like Mufasa's (even if less than 123meters) would still kill or severely injure an adult lion- not taking into account the stampeeding wildebeasts trampling. So, as expected, Disney's The Lion King takes little care in being realistic... It was still interesting to think about, however! And imagine how cool (at least, I think so) it would be if a childhood classic was actually completely accurate- in a physics sense (because animal's can't talk).
  16. 2 points
    Thrilled to help, and welcome to the APlusPhtsics Community! The short version... The College Board says you need to know how to derive them. Very rarely have they asked students to do so, but it has happened... This guide sheet may help with studying: http://aplusphysics.com/courses/ap-c/tutorials/APC-Dynamics.pdf Good luck!
  17. 2 points
    I have a very large interest in bees, so for my first blog post I've decided to research how bees see colors differently compared to humans. Through my research I have discovered that the color spectrum of bees is shifted when compared to the color spectrum of humans. Visible light is part of a larger spectrum of energy. Bees can see ultraviolet – a color humans can only imagine – at the short-wavelength end of the spectrum. So it’s true that bees can see ‘colors’ we can’t. Many flowers have ultraviolet patterns on their petals, so bees can see these patterns. They use them as visual guides – like a map painted on the flower – directing them to the flower’s store of nectar. Some flowers that appear non-descript to us have strong ultraviolet patterns. Being a bee doesn’t necessarily mean you live in a more colorful world. Bees can’t see red – at the longer wavelength end of the spectrum – while humans can. To a bee, red looks black. Humans see light in wavelengths from approximately 390 to 750 nanometers (nm). These wavelengths represent the spectrum of colors we can see. Bees, see from approximately 300 to 650 nm. That means they can’t see the color red, but they can see in the ultraviolet spectrum (which humans cannot). Bees can also easily distinguish between dark and light – making them very good at seeing edges. This helps them identify different shapes, though they can have trouble distinguishing between similar shapes that have smooth lines – such as circles and ovals. Vision is important to bees, because they feed on nectar and pollen – and that means they have to find flowers. Bees can use odor cues to find a perfect flower, but that only works when they’re already pretty close. Vision is essential to help the bees find flowers at a distance. A bees Vision in responce to different colors: Red -> black Yellow -> yellow-green Orange -> yellow-green (darker) Green -> green Blue -> blue plus ultraviolet blue Violet -> blue plus ultra violet Purple -> blue White -> blue green Black -> black In conclusion, bees have a very unique color vision.
  18. 2 points
    As advised by Mr. Fullerton, I did the Coat-hanger bubbles experiment to further understand flux! Pre-experiment preparation: First, in my closet I found a nice metal coat-hanger suitable for the trial. After attempting to reshape the coat-hanger, I learned that my hangers are very strong, or that I lack strength; so, I went to my brother's toolbox and grabbed pliers to help bend the wire into a slinky-like shape. My coil ended up having four turns. I then ventured into my kitchen to fill the sink with soapy water. With the bubbly solution complete, I was ready to start the experiment. The experiment: I dipped my wire coil into the water, and slowly pulled it out. I found that the bubbles didn't form well to the structure. So, I compressed the coil by pushing the turns closer together. When I tried again with the compressed coil, the bubbles formed nicely between each turn and along the outside of the coil. The formation of the bubbles between each turn demonstrated how the number of turns matter when calculating flux. Therefore, the more turns, the greater the flux. Hence, the equation for magnetic flux is: N=number of turns A=area within one loop B=magnetic field =angle between magnetic field and positive normal direction Everyone should try this experiment before the test on Wednesday!
  19. 2 points
    11/10 already and all i've read was the title.
  20. 2 points
    While I was pouring ice cold lemonade for myself, I wondered-- "What would happen over time if I waited for a cup filled completely to the brim with ice to melt? Would the water spill over the cup as the ice melted? Or would the ice just melt leaving the cup still completely filled to the brim with no spills?" Huh. I had to test this out. I decided to use a cup filled with ice, and slowly poured water to the exact brim of the cup, and left a napkin under to see if the water would spill over after the ice melted. This was not enough for me. What if the cup were filled with ice and grape juice? Or ice cube grape juice filled with water? Or ginger ale? Or milk? I was curious. I tested these all out, only to find I was wrong in my original hypothesis. I was sure I'd come back to my kitchen a pooling mess of water, milk, grape juice, and ginger ale, but I was very wrong. I had three cups of perfectly filled glasses completely filled to the very very tippy top, like no other cup has even been. It was amazing. I realized something was up with water. These things called hydrogen bonds really mess with us chemist and physicists. Why? Because they can. In liquids, molecules slip, side, bond, break and reform. However when the water turns to ice, the molecules are rigidly bonded. This creates more empty space between the molecules when the hydrogen atoms bond together so rigidly and thus frozen water occupies more room. It is also less dense than liquid H2O because of this space. This is why ice floats in your Sodas. Or why in the winter-- better known as the constant weather in Rochester-- lakes and ponds freeze at the top and not on the bottom. Because ice is less dense due to H2O's molecular structure of Hydrogen bonding (positive to negative --oppositely charged ends of the water molecules-- creating space). Solid ice takes up more space than the liquid state of H2O. You would think that water would behave like every other substance from liquid to solid-- that the molecules would become denser and more compacted-- but no, it does the exact opposite. Because water is tricky, and that's why we drink it. You may be wondering why the milk and grape juice? Those are mostly water based as well, that is why. Due to the change in thermal energy, we all know that the water transferred energy from the high temperature (water) to the low temperature (ice). This is the second law of thermodynamics. It is also considered an energy heat flow. As we know, this happens so that this water glass can reach a happily balanced equilibrium. This is why ice melts. Even milk ice. The energy in the glass is never destroyed; the first law of thermodynamics tells us energy is conserved. Here are some cool links (pun intended) on ice and why it is less dense than its liquid state of H2O. (Also why it would not spill over a glass even when filled to the brim and left alone for an hour or so.) Not all science experiments have to be messy. http://www.word-detective.com/howcome/waterexpand.html
  21. 1 point
    Baby Powder Onix Now, what about the density of Steelix?
  22. 1 point
    You can do it Mady!
  23. 1 point
    Thrilled to have you aboard BrandyBoy... I think we'll be able to challenge you a bit this year, maybe the first serious academic challenge you'll face. When you hit that point (and most students do at some point in this class) -- keep in mind you have tons of fans rooting for you, and it's OK to struggle and fail. Failing is the first step to success, and learning how to fail productively is a terribly underestimated skill. Am I hearing the beginnings of some blog posts on how physics relates to boy scouts?
  24. 1 point
    My dear friend Ryan needed a car. I was gracious enough to give him the beat up ford in my garage. However, physics have worked against this car since 2004. We spent hours trying to get this car to even turn the headlights on. The physics of electrons traveling between my brothers battery and the fords. It took a solid 2 hours in order to get the car to turn over. Finally, my brother got into the car and drove it a bit to get the rust and dust off the car. As a result, the car stalled out and died 20 meters (not yards) down the street. Gravity quickly took the wheel, and the car stopped. Physics never stops working against the ford and Ryan.
  25. 1 point
    This is a long post, I suggest you shorten it up and spend more time playing with hamsters.
  26. 1 point
    we have been studying electricity in physics and to make it more interesting Mr. Fullerton brought in a vandergraph. Mr fullerton asked for volunteers to get shocked and of course my entire volunteered. In one hand I had Brenda and on the other I had Kara. Kara freaked out a little while we were charging up shocking everyone behind her in our line. This gave me the opportunity to shock the rest of the class . and so I raised my hand slowly toward the piece of metal holding the ceiling tiles in place and when my finger was approximately three inches away from the metal I saw a mini lighting shoot out of my finger and into the metal while simultaneously electrocuting everyone else . This experience was a unexpectedly painful some might say it was even shocking.
  27. 1 point
    This was a very Madge post and I loved every second of it... Bravo.
  28. 1 point
    Good job Kyra! Maybe I'll see you in Disney.
  29. 1 point
    I absolutely loved reading this -- not only for the awesomeness that is our universe, but that awesomeness that is your enthusiasm. Great post!
  30. 1 point
    And now we're starting to make electronics small enough that the wave nature of particles is coming into play. Quantum electronic devices are becoming reality, and gate thickness of transistors are becoming so thin that electrons tunneling through dielectrics becomes a problem (or a feature).
  31. 1 point
    Your catapult looks really well done!!
  32. 1 point
    That is so cool that you were able to relate a musical skill to physics. I love your emoji!
  33. 1 point
    My fellow AP-C students and I are working on the Work-Energy unit right now, and in the Webassign there are some questions involving the dot product of vectors. The maximum amount of elements these vectors have is 3, though: <x,y,z> or <i,j,k>. Well, this makes sense, since we live in a 3-dimensional world, of length, width, and depth. Or do we? Obviously, the concept of 3 dimensions has been around as long as mathematics (even in its most rudimentary of forms) has been around. It's obvious because it's what we see, and touch, and live. Trying to imagine a 4th dimension is like trying to imagine a color we've never seen before - it's impossible for our brains to comprehend. Mystics used to describe the 4th dimension as a sort of "spirit realm" - a place free of Earth's bounds and restrictions. With the advancement of science and mathematics, many began to view time as the 4th dimension. It makes some sense - just like we humans are constrained to length, width, and depth, we're constrained to constant increments of time (well, some believe it's not constant...but I'll get to that some other time). (May or may not be inspired by the theory of relativity) In the theory of relativity, Einstein describes time as a fourth dimension. Space being inseparable from time, spacetime became known as its own continuum, but time is mathematically treated differently from the other spatial dimensions. After all, we can move in all directions 3-dimensionally, but only forward in time. For now. However, some more modern scientists such as H. S. M. Coxeter state that using time as a 4th dimension is a cop-out. (Paraphrasing) In this regard, there is a spatial/Euclidean description of the fourth dimension: the vector <x,y,z,w>. Try to imagine this: you know that x, y, and z are all perpendicular to each other. Well, w, the fourth dimension, is perpendicular to all of these. It's pretty much impossible to comprehend, since we live in a 3-D world, but its properties can be inferred. Using dimensional analogies, we can see how 3 dimensions relates to 2, or 2 to 1, and infer how 4 would relate to 3. This can be used for even more dimensions - string theory, for example, relies on the existence of 10. There are mathematical limitations to these inferences. Here's one example: Circumference of a circle = 2Ï€r Surface area of a sphere = 4Ï€r^2 So what's the surface volume of a hypersphere, a fourth dimensional figure? Using dimensional analogies, we might be tempted to say 8Ï€r^3, assuming it's multiplied by 2r each time. However, the real answer is apparently 2Ï€^2*r^3. Don't ask me why, I didn't derive the equation. I can't do this subject justice in a concise blog post, or probably with any. It's incredibly complicated and I don't wish to oversimplify - so research further if you're interested!
  34. 1 point
    Introduction: We decided to see if cars travelling North down Cooper Road outside of Irondequoit High School were speeding. We set up a timing station at twenty meters from the start to measure the speed of passing cars. Procedure: We chose a starting point on a line on the road, so timers could better see when cars started the measurable distance. When a car passed the starting point, timers at the station began their stopwatch. When the car passed the timer, they stopped their watch. Timers recorded the time it took for the car to travel the distance. Calculation: Conclusion: The average speed was 15.7 m/s, just .1m/s over the speed limit. Our conclusion is that cars travelling on Cooper Road do not often speed, perhaps due to the school zone. If we do this experiment again, there are a few things we can improve on. For one, we had some large distances in time span; this can be remedied by perhaps standardizing the timing system – should the timer start/stop when the front of the car passes through each point, the middle of the car, or the end?
  35. 1 point
    You're really good at guitar Peter! And I agree with your second paragraph, it really will help to view the world differently! Oh & the homework part too!
  36. 1 point
    Hi Sungy, The following may help you with putting all the pieces together... http://www.aplusphysics.com/courses/ap-c/videos/APCRotKin/RotKin.html http://www.aplusphysics.com/courses/ap-c/videos/MomentOfInertia/MomentOfInertia.html http://www.aplusphysics.com/courses/ap-c/videos/Torque/Torque.html http://www.aplusphysics.com/courses/ap-c/videos/APC-RotationalDynamics/RotDyn.html
  37. 1 point
    The average AP Physics student enjoys the course until one thing hits....electrostatics. It is doable, but it is much different from the usual "block slides down the incline" norm. What makes it so weird, intangible, and seemingly impossible when one moves on to magnetism, electromagnetic induction, and other hellishly sounding topics? My understanding is simply that you can do the following: -Touch an object -Throw, drop, kick, or destroy an object -Feel gravity and gravitational fields But you CAN'T do these things: -Feel an electric field (unless you have the right supplies) -Touch point charges, electrons (don't get too technical here), protons and a "coulomb". -Throw, drop, kick, or destroy electricity. We understand gravity simply because we're feeling it right now. Electric fields are ALSO bombarding you at the moment, but you don't feel them consciously. The lack of visualization readily available to the everyday E&M contributes to the hatred of the topic. Rightly so, E&M. Go shock someone else.
  38. 1 point
    The Hour of Code is simple. Just go to code.org and click the START button. Yes, it is really that simple. There are quite a few tutorials at several different levels and in several different programing languages. But the real ... View the full article
  39. 1 point
    Hi, I was wondering how a Faraday cage works. Why is that that electric fields exist outside conductors and even on the surface of conductors but the field is always perpendicular to the surface of the conductor? Also, in relation to this topic, a conductor with an excess of negative charge is in electrostatic equilibrium. Describe the field inside the conductor. What does it mean for it to be in electrostatic equilibrium. Is it just that the electrons are on the surface of the conductor? if so, wouldn't the inside of the conductor be charged positive because a lot of the negative charge is no the surface. Thank you so much for those who take the time to answer my question!
  40. 1 point
    Sink throwing is awfully impressive especially using fizzics
  41. 1 point
    Hi there. I'm a new Physics AP-C student, and I would like to tell you a little bit about myself. I'm an avid programmer/science enthusiast, and am looking towards entering a scientific or science-related field. I (as one may assume) like science and math, and more leisurely things like playing video games or disc golfing. Things of the sort. The reason I'm taking Physics AP-C this year is because I'm interested in learning more about physics and I want to solve more challenging problems using my physics knowledge. I enjoy calculus and I think it will be cool to see some of the applications of what I learn. As a result, I hope to not only hone my calculus knowledge but get some useful information on specific areas of physics and, in general, how to approach difficult, complex problems in an effort to solve them. I always enjoyed electricity and magnetism, and I'm looking forward to that and hopefully being able to dream up some cool uses for my new knowledge. However, no matter what we learn, I think I'll be excited just to know it. So I'm hoping to have fun!
  42. 1 point
    Hi I'm Reed and I go to west irondequoit high school. I will be going into my senior year and I super excited about the fact that I am senior class president for the second year in a row. I am also a dancer I have been dancing for 11 years, I am also the captain of the varsity swim team for the second year in a row. I also love to read books, listen to music, hang with my friends, and learning something new. In high school you are told to take three years of science and the fourth year is optional, you decide if you would like to continue on with science. I had originally planned not to go into a fourth year of science because I am not a science person and I do not do well, however my counselor convinced me otherwise. She told me that many colleges look if you have taken four years of science and they prefer that you continue with science as long as you can. I decided that she was right and I picked physics because i really want to shot a catapult and make bottle rockets. That to me makes science more fun and interesting.
  43. 1 point
    Hey way to go on becoming an Eagle Scout. That looks so good on college applications. I think we all will learn some interesting this year. I bet we can connect everything that we think of. Like you can connect to soccer as well as your adventures with your troop. And I can connect to hockey. It will be a challenge but we can handle.
  44. 1 point
    Very expensive but it looks good.
  45. 1 point
    First try finding the charge in coulombs, then convert coulombs to electrons. This mini-tutorial may help: http://www.aplusphysics.com/courses/honors/circuits/current.html So, if you use q=It, solve for q in coulombs. Then, convert q (in coulombs) to elementary charges, or electrons, using 1 electron = 1.6*10^-19 C. Does that help?
  46. 1 point
    First let me warn you that I'm barely scratching at the surface of consciousness and the scientists still have a lot to learn. When you search this there seems to be two theories one that consciousness is similar to computers the other that consciousness revolves around the unity of different worlds and the reality as we see it is only an illusion. If you want to see a short clip of the physics of consciousness you can watch this: This only tells part of they story and other you tube videos can go on for a couple hours trying to explain consciousness. But one of the main points it brings up is that there is more in this world than by our human senses we can detect. Our bodies are made up of several worlds the one we see and can comprehend, the world of our cells and even smaller the world of the atoms that make up us. The world is made up of waves and somehow the world of intentions can change what goes on. One of the experiments that proved how your thoughts can change the way something turns out is an experimental machine that randomly generates coins of either 1's or 0's. They would tell people to try to count more ones than zeros and according to their results the number they thought about whether it was more ones than zeros or whatever would relate to the number of coins that the coin generator would produce. Another thing they talked about was how their is more than enough energy in the vacuum of space to produce universes. Yet we can't see anything but the vacuum can't be empty because of the continuation of stars being created out of seemingly nothing and the possibility that electrons can be both here and there and nowhere at the same time. Like Mr. Fullerton's cat in the box experimental theory he got from some other scientist trying to explain Quantum Physics. You would theoretically put a cat in the box with a capsule of cyanide that has a 50 percent chance of going off and killing the cat. Yet you couldn't see the cat or shake the box or the capsule would automatically go off. So you would assume the cat was both dead and alive like how with the double slot experiment with electrons you would assume it bounced of the background, went through both slits and also interfered with itself creating the interference pattern. So with the little I know and the information I learned from the video you can learn some interesting facts and concepts about consciousness that you might never have thought about before.
  47. 1 point
    As a volleyball player and also a physics student, it’s only natural that I came about the question as to how physics is related to serving and hitting. I knew that in order to jump higher, or to have a harder, faster serve or hit physics must be taking place. I came about these equations that relate to the physics behind this sport: Vf = Vi + at V^2 = Vi^2 = 2ad Finding the acceleration of a volleyball player would allow us to find out the speed of a player whose velocity is increasing or decreasing within a certain amount of time. As well as the player, the ball also has an acceleration. During a serve it is very likely that the ball has a constant acceleration. Throughout the distance of the ball being served, the velocity is constantly increasing thus the velocity is increasing at the same amount for these time intervals. Hitting is not all about contact and force. It also has a lot to do with timing. After the ball is set your brain is assessing the speed and placement of the set thus creating a time frame for your approach. With seeing the distance needed to travel and the velocity at which the ball is traveling, we can calculate the time needed to make this approach. This is found through the equation: V= d/t After doing this research I have concluded the many possibilities that are related between volleyball and physics. We can assess the acceleration of a ball or the timing of a player all through physics!
  48. 1 point
    Awesome blog post and exploration into the world of fluids, Thermo, and chem! I love it!!!
  49. 1 point
    there has been a large amount of misconception around this topic, a major contributor being the fact that people mix cornstarch and water and call it a non-newtonian fluid, when in fact it is only a colloid. colloids are not fluids, as they are heterogeneous, consisting of liquid and fine particle mix. they have changing viscosity because the particles cant flow away as fast as the liquid, and are bunched together as a pseudo solid. this is different from a non newtonian fluid because the fluid changes viscosity because it is in a near-crystalline state, and acts like a crystalline solid as pressure is applied. some examples of this are jolly ranchers(corn starch), some types of bullet proof glass, and shampoo
  50. 1 point
    Three amazing students at Irondequoit High School have made a break through in the study of physics: By only using a stopwatch, a measuring tape, and a ball, the acceleration due to gravity has been calculated in a new and scientific way. Students measured the height from the floor of the classroom to the top of the ceiling with a measuring tape, and got 2.75 Meters. Holding the ball at the top of the ceiling, the three students dropped the ball and started the stopwatch at the same time. They measured that the time the ball took to hit the bottom of the floor was .64 seconds. Also, the initial velocity of the ball was 0 m/s because any object dropped starts with an initial velocity of 0. Using this information, the students calculated for the acceleration to see if it really is 9.81 m/s2 . The Formula : d= viT+ (1/2)(a)(t^2) was taken to figure it out. with the information they had, the converted formula became: 2(2.75 m)/ (.64s)^2 = A . The answer obtained was 13.4m/s^2. Obviously it is not the real accepted value of 9.81, so they had to calculate percent error also. using the formula: (accepted value - actual value)/(accepted value) X100, the answer came out to be that there was a 36.6% error in their experiments. Faults in the experiment were being able to time the stop watch precisley, and measuring an accurate distance from where the ball was dropped , to the ground. Overall, the students at Irondequoit High School have created astounding breakthroughs in calculating acceleration due to gravity.


  • Newsletter

    Want to keep up to date with all our latest news and information?
    Sign Up

Terms of Use

The pages of APlusPhysics.com, Physics in Action podcasts, and other online media at this site are made available as a service to physics students, instructors, and others. Their use is encouraged and is free of charge. Teachers who wish to use materials either in a classroom demonstration format or as part of an interactive activity/lesson are granted permission (and encouraged) to do so. Linking to information on this site is allowed and encouraged, but content from APlusPhysics may not be made available elsewhere on the Internet without the author's written permission.

Copyright Notice

APlusPhysics.com, Silly Beagle Productions and Physics In Action materials are copyright protected and the author restricts their use to online usage through a live internet connection. Any downloading of files to other storage devices (hard drives, web servers, school servers, CDs, etc.) with the exception of Physics In Action podcast episodes is prohibited. The use of images, text and animations in other projects (including non-profit endeavors) is also prohibited. Requests for permission to use such material on other projects may be submitted in writing to info@aplusphysics.com. Licensing of the content of APlusPhysics.com for other uses may be considered in the future.

×
×
  • Create New...