Jump to content

Leaderboard


Popular Content

Showing content with the highest reputation since 11/14/2010 in Blog Entries

  1. 3 points
    Last weekend I crossed the border into Toronto, Canada for a "girls weekend" with my mom and sister. Our main purpose of going there was for a yoga convention for all the yogies of the world. While at this convention, we of course experienced tons of physics! When doing different yoga poses, we experienced the great phenomenon-gravity- at work. When "ohming" or saying "namaste" we experienced sound waves, and the vibration they produced so that we could here them. But when we weren't doing yoga, we somehow still experienced physics! By dropping tons of money at the 3-story mall, The Eaton Centre, we experienced the force that our heavy shopping bags created on our arms. When taking the elevator to a new floor of designer stores, we experienced physics there and how we felt heavier when going up, but lighter when going down due to acceleration. We lastly saw physics when we hit the pool/hot tub in our wonderful hotel. The jets pushed water out creating different waves or bubbles. We also created waves by jumping into the pool. Depending on the type of jump or how hard it was, the amplitude changed all the while carrying the energy we put forth by jumping in. This weekend adventure was full of physics just like everything else!
  2. 2 points
    ...(But probably not.) In light of the holiday season, I bring to you a Christmas-themed blog post, with a pinch of love and some hints of gravitation. I came home from school today and stepped into the living room, astutely noticing that the Christmas tree had fallen. Obviously, the first thing that ran through my mind was that gravity did this. I mean, gravity's everywhere - it's a pretty likely culprit. You may or may not notice the lamp just above where the tree fell, but I believe it to be of great importance in this investigation. I have deduced that, at any time from 10:00 AM to 2:00 PM on Tuesday, December 16, the gravitational attraction between the tree and lamp created a gravitational orbit that forced the tree out of its holder, and onto the cold ground. Let's take a look. First off, the tree had to begin in static equilibrium - it was still at first. Due to Newton's first law, an outside force had to act upon this tree, and I do believe that the placement of the lamp near this tree provided an IMMENSE GRAVITATIONAL FORCE. So let's dive in. We know that the magnitude of this force is given by GMm/r^2, where G is a constant, M is the tree, m is the lamp, and r is the distance between the two. G = 6.67E-11 Nm^2/kg^2, we know this. The average mass in kilograms for a Christmas tree is about 70 pounds at this height of tree, or 31.75 kg. The mass of the lamp is about 8 pounds, or 3.63 kg. I can already see this force is about to be massive. And the distance between the center of mass of the tree and lamp? About 5.5 feet, or 1.68 meters. Time to calculate. F = [(6.67E-11 Nm^2/kg^2)(31.75 kg)(3.63kg)]/((1.68m)^2) Therefore, the force due to gravity is a whopping 2.72 NANONEWTONS. This incredibly large force undoubtedly caused the displacement of the tree; therefore, gravity ruined Christmas. You may be subconsciously pointing out the holes in my story, like how did a gravitational orbit just occur if the lamp was there the whole time, or perhaps just pointing out the fact that two objects on Earth will likely only apply negligible forces to each other. Fair enough, but keep in mind that there is absolutely no other worldly explanation for this phenomenon. So it's either gravity, or ghosts. You decide. Or maybe the cat just knocked it over.
  3. 2 points
    Physics is involved in pretty much everything in life. Throughout my school day I experience all kinds of physics. First period I have Italian where I sit down (along with the rest of my classes) and I am applying a force to the chair and the chair is applying a force to me because of Newtons third law. Second period when I get my math test score back I hit my head against the desk which is also applying a force to the desk and the desk applies one right back. Third period is art class where I gravity is pushing my eyelids down while I struggle to stay awake. Fourth period is APUSH which could be compared to a black hole. Black holes have tons to do with physics. A black hole is a point in space with so much gravity that not even light can escape and that is most definitely APUSH... Fifth and 6th periods are the best of the day because I do not have classes these periods so I can do my homework. Seventh period is English where I push down on my pencil and it leaves a mark on the many papers I have to write. Gravity also pushes down on that pencil. Eighth period could be the first period of a double for physics or if I am lucky its gym. In gym there is so much physics. A ball is thrown and is a projectile motion. Gravity acts on the ball at all times. If were running in gym we push down on the ground with our legs and the ground pushes us back allowing us to run. And then ninth period, well there is too much physics in a physics class to list. Tons of gravity throughout the day and tons of newtons laws. Crazy..
  4. 2 points
    So if you haven't heard, a rocket that was supposed to bring supplies to the International Space Station (ISS) exploded on October 28. Here's a short article and video talking about it: http://www.wired.com/2014/10/antares-rocket-explosion/. Obviously, this kind of sucks. The rocket cost about $200 million and now most of the supplies won't make it to the ISS. However, explosions are still really fun to watch, especially one that big and I don't feel bad saying that since the rocket was unmanned. Also interesting is that the rocket was made by Orbital Science, under contract of NASA. This shows that the space industry is slowly because more of a private industry with Orbital Science and SpaceX leading the way at the moment. They aren't sure exactly what caused the rocket to fail, but the actual explosion was caused by the self-destruct being purposefully activated. The real problem was right when it fired its first stage - you can kind of see this in the video. As soon as this problem was noticed, it was decided to destroy the rocket before it reached a populated area and could potentially cause damage. Any number of factors can mess up a rocket launch; there are a lot of variables. Wind speed and direction, an area clear of people, weather, calculations, etc. I think the biggest things I learned from this are that those errors we usually don't account for in our physics labs (FRICTION!!) matter a lot in the real world, and that we still have not perfected going to space. I'm excited for space tourism anyway.
  5. 2 points
    Soooo, because this is my last blog post for this year ( ), I thought it would be fitting to do a course reflection on the AP-C physics class this year. I thought I'd do it in a "bests-vs-worsts" top 5 format, kind of like you could find on collegeprowler.com when viewing different schools. Top 5 Bests: 5.) Blog Posting [i thought this was really fun! I've never done anything like this before for a class. It brought up interesting physics applications and I thought it was fun to converse with classmates on the site ] 4.) Independent Units [As uncomfortable as I was at first, independent units forced me to manage my time, work harder than usual to learn the topic, and was great preparation for college. I feel like everyone sould experience this kind of a unit before graduating] 3.) Assigned practice problems from the readings [Assigned problems were REALLY helpful. I would've struggled a lot more than I did had I skipped doing the sample problems] 2.) Units with Lecture & book follow-up [This is my favorite way to learn things! The read-then-lecture method] 1.) VIDEOS <3 [Hands down the most helpful resource in Physics] Top 5 Worsts: ...I think this is my biggest beef. I really don't have 5 things to complain about. 1.) Readings weren't assigned [When life gets busy in the middle of the year, especially with a number of APs, sports, etc., readings are the first thing to get cut out for me if they're not assigned. Confession: when the going got tough, I would often skim or not read. I reccomend assigning readings in the future. Kids will complain, but they'll thank you when they see better grades and their AP score.] Overall, this was a successful year. A note to future students: This is by far the hardest AP course I've taken throughout high school. If you want to succeed, you must: A.) Read the textbook and do some practice problems B.) WATCH THE VIDEOS. Whether you're confused or simply want review, these are soooo outrageously helpful. It's like being in class a second time, except in 15 minutes or less instead of 42. Plus, you can skip over any sections that you feel you know solid. C.) REVIEW THE EQUATIONS AND FREE RESPONSE BEFORE THE AP. I went through most of the E&M free response questions as well as both E&M and mechanics equations before the exam. KNOW THE EQUATIONS! I swear equations and key concepts are the majority of the test when it comes to the multiple choice Qs. Any favorite parts of the year? Things you wanted to change? Post below with your opinion! ...I can't believe we only have 1 more day of physics
  6. 2 points
    PCX is a workout area that I participate at weekly with my volleyball team. We go on tuesday nights to exercise as a team. I realized while watching videos that i recorded of the exercise's how much physics was applied into each activity. The vertamax that we use for jump training is full of physics. When you use the vertamax you put on a belt with two clips on either side of your hips. You then stand ontop of the vertamax (a square flat surface) and then attach the clips to different color resistance bands. With the vertamax at PCX you can either choose to use it for jump training or leg strength by making the bands go parallel to the floor instead of perpendicular. Once cliped into the machine we are told to jump and go for maximun height. The force of the resistance bands pulls us toward the ground and makes us work harder to get higher into the air. Once we are done useing the clips we unclip the bands and then jump without resistance and analyze the height difference. The jacobs ladder is another machine that we utalize on a weekly basis. Similar to the vertamax you belt yourself into this machine and then "climb the ladder." You can control the speed of the machine with how much force you put into it. If you are working hard and pushing yourself and the machine then the output on the machine will mirror your work and move faster to challenge you. The machine is inclined at a angle so as to simulate climbing up a ladder type object The angle that it is inclined to makes it more difficult to climb. The Pull up bar is also full of physics. With three reps of eight pull ups my team is challenged to bring their entire bodies up into the air transitioning from potential energy into kinetic. We are given band to put our feet into for extra support. The rubberband like bands expand and retract to help differ our weight. The sled is yet another item that we use to work out. Notice this is not your typical snow sled. This sled is a black device that you put weights on inorder to work your legs and arms. Having the sled on the turf surface creates more surface tention and therefore more work to be done by my teamates. There are two different holds that we can choose from when using the sled. The two different holds are all about angles. The higher of the two is easier because you are able to use the machine against itself to push it across the turf. The lower of the holds means that the players body is parallel to the ground and very close to it. The force that it takes to push your legs and arms together to get the seld across the turf is increased from the higher angle hold. Basically every tuesday i have extra amounts of physics added to my day!
  7. 2 points
    My childhood, like many others, was spent watching many Disney Movies. One of my all time favorites was the Lion King- I never grew tired of it. One scene that always sticks in my mind is that once music number of young Simba and Nala and, of course, the scene of Mufasa's Death. (0:49-1:20) It can usually bring tears to even the toughest of teens, yes? As a child, this scene really never bothered me and, now, this sad scene seems to bother me so much more. Mufasa died a heroic, and untimedly, death by saving his only son. However, we should move onto the Physics now. How accurate is Mufasa's death, exactly? Could a fall from that height really kill an adult male lion? How far did he fall, anyway? It's very hard to tell but, after reviewing this scene many times I feel I can give a good shot at answering these questions. From what I can tell, Mufasa's fall lasted roughly 5 seconds (1:07-1:12ish), and started from rest before... Scar decided to be a jerk and condemn Mufasa to death. So, using the equation d=vit+(1/2)at2, knowing his falling time was 5 seconds, he started from rest, and acceleration due to gravity is 9.81m/s2; It can be estimated that Simba's father fell about 123 meters. While he seemes to be fairly high before he fell, I highly doubt that the the distance (vaguely seen at 0:50) was taller than the Statue of Liberty. Obviously, it makes sense why a Disney movie would over exaggerate the death of a character, and not care about making the Physics of a children's movie accurate. While real Lions are tough and resiliant, a fall like Mufasa's (even if less than 123meters) would still kill or severely injure an adult lion- not taking into account the stampeeding wildebeasts trampling. So, as expected, Disney's The Lion King takes little care in being realistic... It was still interesting to think about, however! And imagine how cool (at least, I think so) it would be if a childhood classic was actually completely accurate- in a physics sense (because animal's can't talk).
  8. 2 points
    I have a very large interest in bees, so for my first blog post I've decided to research how bees see colors differently compared to humans. Through my research I have discovered that the color spectrum of bees is shifted when compared to the color spectrum of humans. Visible light is part of a larger spectrum of energy. Bees can see ultraviolet – a color humans can only imagine – at the short-wavelength end of the spectrum. So it’s true that bees can see ‘colors’ we can’t. Many flowers have ultraviolet patterns on their petals, so bees can see these patterns. They use them as visual guides – like a map painted on the flower – directing them to the flower’s store of nectar. Some flowers that appear non-descript to us have strong ultraviolet patterns. Being a bee doesn’t necessarily mean you live in a more colorful world. Bees can’t see red – at the longer wavelength end of the spectrum – while humans can. To a bee, red looks black. Humans see light in wavelengths from approximately 390 to 750 nanometers (nm). These wavelengths represent the spectrum of colors we can see. Bees, see from approximately 300 to 650 nm. That means they can’t see the color red, but they can see in the ultraviolet spectrum (which humans cannot). Bees can also easily distinguish between dark and light – making them very good at seeing edges. This helps them identify different shapes, though they can have trouble distinguishing between similar shapes that have smooth lines – such as circles and ovals. Vision is important to bees, because they feed on nectar and pollen – and that means they have to find flowers. Bees can use odor cues to find a perfect flower, but that only works when they’re already pretty close. Vision is essential to help the bees find flowers at a distance. A bees Vision in responce to different colors: Red -> black Yellow -> yellow-green Orange -> yellow-green (darker) Green -> green Blue -> blue plus ultraviolet blue Violet -> blue plus ultra violet Purple -> blue White -> blue green Black -> black In conclusion, bees have a very unique color vision.
  9. 2 points
    As advised by Mr. Fullerton, I did the Coat-hanger bubbles experiment to further understand flux! Pre-experiment preparation: First, in my closet I found a nice metal coat-hanger suitable for the trial. After attempting to reshape the coat-hanger, I learned that my hangers are very strong, or that I lack strength; so, I went to my brother's toolbox and grabbed pliers to help bend the wire into a slinky-like shape. My coil ended up having four turns. I then ventured into my kitchen to fill the sink with soapy water. With the bubbly solution complete, I was ready to start the experiment. The experiment: I dipped my wire coil into the water, and slowly pulled it out. I found that the bubbles didn't form well to the structure. So, I compressed the coil by pushing the turns closer together. When I tried again with the compressed coil, the bubbles formed nicely between each turn and along the outside of the coil. The formation of the bubbles between each turn demonstrated how the number of turns matter when calculating flux. Therefore, the more turns, the greater the flux. Hence, the equation for magnetic flux is: N=number of turns A=area within one loop B=magnetic field =angle between magnetic field and positive normal direction Everyone should try this experiment before the test on Wednesday!
  10. 2 points
    While I was pouring ice cold lemonade for myself, I wondered-- "What would happen over time if I waited for a cup filled completely to the brim with ice to melt? Would the water spill over the cup as the ice melted? Or would the ice just melt leaving the cup still completely filled to the brim with no spills?" Huh. I had to test this out. I decided to use a cup filled with ice, and slowly poured water to the exact brim of the cup, and left a napkin under to see if the water would spill over after the ice melted. This was not enough for me. What if the cup were filled with ice and grape juice? Or ice cube grape juice filled with water? Or ginger ale? Or milk? I was curious. I tested these all out, only to find I was wrong in my original hypothesis. I was sure I'd come back to my kitchen a pooling mess of water, milk, grape juice, and ginger ale, but I was very wrong. I had three cups of perfectly filled glasses completely filled to the very very tippy top, like no other cup has even been. It was amazing. I realized something was up with water. These things called hydrogen bonds really mess with us chemist and physicists. Why? Because they can. In liquids, molecules slip, side, bond, break and reform. However when the water turns to ice, the molecules are rigidly bonded. This creates more empty space between the molecules when the hydrogen atoms bond together so rigidly and thus frozen water occupies more room. It is also less dense than liquid H2O because of this space. This is why ice floats in your Sodas. Or why in the winter-- better known as the constant weather in Rochester-- lakes and ponds freeze at the top and not on the bottom. Because ice is less dense due to H2O's molecular structure of Hydrogen bonding (positive to negative --oppositely charged ends of the water molecules-- creating space). Solid ice takes up more space than the liquid state of H2O. You would think that water would behave like every other substance from liquid to solid-- that the molecules would become denser and more compacted-- but no, it does the exact opposite. Because water is tricky, and that's why we drink it. You may be wondering why the milk and grape juice? Those are mostly water based as well, that is why. Due to the change in thermal energy, we all know that the water transferred energy from the high temperature (water) to the low temperature (ice). This is the second law of thermodynamics. It is also considered an energy heat flow. As we know, this happens so that this water glass can reach a happily balanced equilibrium. This is why ice melts. Even milk ice. The energy in the glass is never destroyed; the first law of thermodynamics tells us energy is conserved. Here are some cool links (pun intended) on ice and why it is less dense than its liquid state of H2O. (Also why it would not spill over a glass even when filled to the brim and left alone for an hour or so.) Not all science experiments have to be messy. http://www.word-detective.com/howcome/waterexpand.html
  11. 1 point
    The Space Race between both the USSR and the United States is by far one of my favorite eras of history to study. They say competition is the perfect motivation, and I truly believe, from a technological standpoint, this is era is a prime example of that motto in its purest form. Some of the biggest strides in human history were made in a time where computers were still the size of rooms all due to fear, curiosity, and drive. Public Service Broadcasting’s album, “The Race For Space”, tries to capture all of these emotions, during a handful of critical points, along this journey in order to show how important this period was for Humanity as a whole. (I will cover the tracks in event order not track order) Track 2: Sputnik The year is 1957, and, as tensions of the Cold War are ever increasing with no end in sight, humanity has its eyes on the one place neither power has even traveled: space. The Soviets, ever fearful of the United States launching into orbit, rushed through their plans to launch a 3,000 pound satellite equipped with various scientific instruments. They ended up downsizing dramatically to a 184 pound payload with a 58 centimeter diameter without any instruments. On October 4th of that year it was launched on a R-7 rocket with four stages. It nearly suffered a catastrophic launch failure, but the a combination of engine thrust and wing movement saved it last second. Well what did it do? It beeped. And that beep was the beep heard all around the world. Well at least for 22 days… its batteries actually exceeded the expectation of 14 days. For the first time in all of human history something was able to orbit the earth. It wasn’t the first man-made object in space, but it was the first which was in continual free fall around the earth. So, yes, the Soviets to prove themselves put a beeping piece of metal into orbit because that is all they needed to do to stir so much amazement and fear. The device whose name directly translates to “travelling companion”, would be the spark which set the both countries ablaze and straight into the most heated technological race in all of human history. Track 3: Gagarin It is now April 12th, 1961. Multiple years have passed since Sputnik, but no shortage of tests and animals had been launched into space, including the famous cosmonaut dog Laika on Sputnik 2. Now it was time to push the barrier forward onto man's reach into space. Enter Yuri Alexeyevich Gagarin. A 27 year old Senior Lieutenant Gagarin was chosen out of over 200 Russian Air Force fighter pilots by peers and project heads due to his exceptionally quick thinking and attention to detail. At 9:07 A.M. Vostok 1 took off carrying Gagarin on board. Due to the feared consequences of free fall, the Russian mission control was totally in control of the craft the entire time. Yuri was the first human ever in space, a true high water mark achieved by humanity. His trip lasted one obit, a total of 108 minutes. While the United States press showed fear of losing the space race, he was seen in many places as a hero for humanity, going on a global world tour to be paraded around countries including England, Canada, and, of course, across the USSR. This stance of him being a pioneer, regardless of national affiliation, is what PBSB was aiming for in their upbeat track. Looking back now it is easy to say he was a true pioneer for all of humanity and his efforts will forever go down in history as that of a hero. Track 1: “The Race for Space” The date is now September 12th 1962. President Kennedy is making a speech to 40,000 people in Rice Stadium. At this point, the United States is far behind in the space race launching the first American, John Glenn, nearly a year after Gagarin. Kennedy knew he needed to rouse the American spirit, and, in effect, his speech became a defining speech in American history. A link to the full speech can be found here: https://er.jsc.nasa.gov/seh/ricetalk.html. Perhaps one of the most ambitious technological proposals made by a president, Kennedy promised that by the end of the decade America would put a man on the moon. Keep in mind no spacewalks had been taken, lunar modules had been made, no docking sequences had even been practiced, and here was the nation’s leader saying we could make it in 8 years or less. The National Defense Education Act had been passed due to Sputnik and had been in effect since October 4th 1957. Now its efforts of acting as a booster for the mathematics and science related fields was beginning to see results. Young engineers and scientists began coming out of Universities in order to rapidly increase the nation’s technological investments to bound ahead. This key moment not only left the nation space crazed, but made getting to space a budgeted objective at the front of the nation's interest. This vow and critical commitment is what would pave the way for the American Space program to come, as now Americans all over had their eyes on the skies. Track 7: “Valentina” Fast forward to June 16th, 1963, Vostok 6 is launched. It is the last in the man orbital missions launched by the USSR starting with Gagarin. Well what made this so different? This time the passenger was Valentina Tereshkova. Yes, the first woman in space. Her mission lasted 3 days and she kept two way radio communications with Voltok 5 which was orbiting with her. In this time she made 48 orbits, which was quite a large feat at the time. Her personal background was that of an avid skydiver and textile factory worker making her the first civilian in space as well. The space suit she wore was the MK-2 which was very similar to the MK-1 that Gagarin wore. These suits were only meant to be pressurized in an emergency, such as if the cabin was punctured. It would take a better space suit in order to do an EVA which is the coming up milestone. Up until this point, humans have remained within their pressurized cabin in order to take a safe trip, but now we move onward and upward by finally getting out of the restrictive hull. Track 5: “E.V.A” On the 18th of March 1965, the Voskhod 2 mission was launched. Two cosmonauts were abroad: Pavel I. Belyayev and Alexey A. Leonov. Belyayev was the primary pilot while Leonov was the secondary, but he had a far more important mission. He was to perform the first E.V.A trialing the first space suit with a life support system in the backpack. The flight lasted 26 hours and made 16 orbits. During this time the first spacewalk lasted approximately 20 minutes with Leonov claiming the experience gave him a sense of complete euphoria and tension at the same time. The mission, being reported as a major success, acted as a dramatic blow to the United States government. At the same time, many catastrophic failures occurred while in space, but were never reported on the ground. A few moments after Leonov stepped out of the shuttle he realized his suit had inflated to the point he could not get back in. He needed to decompress, and as he let out oxygen he began feeling the initial symptoms of decompression sickness. He began pulling rapidly on the cord thrusting himself in with a moment to spare, but at his current temp he was at risk of heat stroke. His perspiration blocked his view so he had to maneuver around the airlock blind. He eventually did it and made it back in to the safety of the shuttle. This was only the start of the problems though. Due to this maneuver the oxygen content of the shuttle soared, meaning any single spark would have it blow up as quick as a flash. They managed to lower the oxygen concentration back to a safe levels. The ultimate test occured when they had to manually re-enter the atmosphere due to engine problems. They were exposed to high G forces along with high temperatures only to land off course in Siberia. They were eventually recovered and hailed as heroes. This was yet another large step to making it to the moon with the United States still lagging behind. And they were soon to have one of their largest hardships to date. Track 4: “Fire in the Cockpit” On the 27th of January 1967, an event which would live in national infamy occurred. The Apollo 1 space crew, comprised of Virgil Grissom, Edward White, and Roger Chaffee, all entered their command module to undergo a simulation for their up and coming launch. The first problem arose when Grissom complained of a “sour smell” in the spacesuit loop, but decided to continue the test. This was followed by high oxygen flows triggering on and off the alarm. This wasn't resolved as the communications were experiencing problems resulting in the line being only between pilot Grissom and mission control. At 6:31, oxygen levels quickly rose as Chaffee casually says he smells fire, but within two seconds, White proclaims, “Fire in the cockpit.” Escape procedure was supposed to take ninety seconds, but ultimately that time frame was too long. In the highly oxygenated environment, the fire spread too quickly, followed by the command module rupturing forcing black smoke across the landing pad. An eventual investigation found that the fire was started by a faulty bundle of wires located behind their heads. It took firemen three minutes to quell the fire and to open the doors, but it was too late all three perished. It was a day of national remembrance and an overall low in the American Space program up until that point. Their sacrifices were distinguished with the highest regard as the nation mourned and tremendous loss. Track 8: “Go!” Apollo 11 is by far the most known aspect of the space race. It is the moment where scholars say the United States sealed their place as the winners of the space race. It inspired kids for years to come to become astronauts. The Apollo 11 mission’s ultimate goal was to land the first man on the moon fulfilling Kennedy's earlier promise and legacy. Apollo 11 launched on July 16th, 1969 with astronauts Neil Armstrong, Michael Collins, and Edwin “Buzz” Aldrin. It took 75 hours to reach lunar orbit. This is where the focus of the song is. It includes a systems check as the lander makes it's landing maneuver and lands on the surface. The utter tension at mission control was palpable. This was the most critical part of the mission, and when they landed, from the utter joy heard over the radio, the public knew they had finally done it. Tee descent began at 102:33 with the ultimate touchdown resulting at 102:45. After a period of set up and a postponed rest period, Armstrong made his exit onto the surface at 109:24:19 to utter those famous words. Aldrin soon followed behind with the whole thing being broadcasted to the American Public. This moment, the moment where America gathered around their television screens to watch them be the farthest away from anyone else that any human has ever been, was the height of the space race. They made their return launch starting at 124:22 and plunged back into the Pacific Ocean on July 24th. These pioneers set the standard of human exploration in the space age and acted as role models for new explorers for years to come. Track 9: “Tomorrow” The last track of the album is of course the most inspirational. It focuses around Apollo 17, which was the last manned mission to the moon. it was launched on December 7th, 1972 with crew members Eugene Cernan, Ronald Evans, and Harrison Schmitt. It's main objectives were to put a Rover on the moon, conduct testing, and take samples such as moon rocks and photographs. In total over 16 hours of EVA were conducted, 30.5 kilometers we're traversed by the rover, and 243 pounds of samples were collected. The mission was a success but extremely bitter sweet being the last mission in the Apollo chapter. It ultimately completed the era of the Space Race. It has much more sentimental value in this aspect, as the track takes the time to reflect on the previous decade and a half of progress and how far the human race has come. Ultimately the space race was a period of history where nations gathered behind the scientific progress they conducted. Yes, there was always the fear of mutual destruction, but the sense of shared awe at what humanity achieved far overshadows that factor when looking back at history. There are not many periods of history where technology progressed at such breakneck speeds, and may not be for a long time. There is plenty more to read about the period, and I encourage you to do so if this interested you at all. As always it had been a pleasure! This is ThePeculiarParticle, signing out. Informal Bibliography Esa. “The Flight of Vostok 1.” European Space Agency, European Space Agency, www.esa.int/About_Us/Welcome_to_ESA/ESA_history/50_years_of_humans_in_space/The_flight_of_Vostok_1. “The First Spacewalk.” BBC, BBC, 2014, www.bbc.co.uk/news/special/2014/newsspec_9035/index.html. Larimer, Sarah. “'We Have a Fire in the Cockpit!' The Apollo 1 Disaster 50 Years Later.” The Washington Post, WP Company, 26 Jan. 2017, www.washingtonpost.com/news/speaking-of-science/wp/2017/01/26/50-years-ago-three-astronauts-died-in-the-apollo-1-fire/?noredirect=on&utm_term=.7d4feb08cec3. “NASA.” NASA, NASA, www.nasa.gov/. “National Air and Space Museum.” The Wright Brothers | The Wright Company, airandspace.si.edu/. RFE/RL. “Kennedy's Famous 'Moon' Speech Still Stirs.” RadioFreeEurope/RadioLiberty, RadioFreeEurope/RadioLiberty, 13 Sept. 2012, www.rferl.org/a/kennedy-moon-speech-rice-university-50th-anniversary/24706222.html. “Space.com.” Space.com, Space.com, www.space.com/. “Sputnik Spurs Passage of the National Defense Education Act.” U.S. Senate: Select Committee on Presidential Campaign Activities, 9 Mar. 2018, www.senate.gov/artandhistory/history/minute/Sputnik_Spurs_Passage_of_National_Defense_Education_Act.htm. (Disclaimer the websites were used many times for different articles)
  12. 1 point
    Last weekend at an honors interview at Roberts, I got to take a look in some of their physics labs. they had some fun things set up for us to check out. One thing was in a section called "physics and music". Sounds perfect for me, right? They had a bunch of wine glasses filled with different amounts of water. When you dipped your finger in some water and rubbed it around the edge of the glass, a specific note could be heard. However, if your finger isn't wet, it doesn't work. Why? Turns out, it is because there is too much friction between the finger and the glass when the finger is dry. When the finger is wet, there is minimal friction, which allows the glass to vibrate, which produces the note. The amount of water in the glass determines how high or low pitched the note is. If you try this experiment, try placing a ping pong ball in the glass. The ping pong ball will make the vibrations visible because it will move on top of the water as the glass vibrates.
  13. 1 point
    The first point of sectional finals, we have serve. Ace. A couple more aces and a big serving run and we are now up 18-3. We end up winning the first set 25-6. 25-6. 25-6, in sectional finals, against Pittsford Sutherland. It is clear now who has the momentum moving forward. The momentum from the first set carried us in the next two sets and we end up winning the match and sectional finals. In a sport, when a team has the "momentum" in the game, it means that they are the ones on the move and will be hard to slow down and stop. In physics, momentum is the product of mass and velocity, and the equation is p=mv. Therefore, as mass or velocity increases, so does momentum. Momentum is also a vector quantity, so it has a direction to go along with the magnitude. A change in momentum is the impulse which uses the equation J=Ft. It would take a large amount of force in a large time to create a big impulse or change in momentum. Last night, Sutherland started to create an impulse in the second and third set, but it wasn't enough to sway the momentum in their direction. Here's a video of the final point of the match last night!
  14. 1 point
    As I was scrolling through Instagram, I came across a post by Nasa that said today, October 14th, 2017, is the 70th anniversary of supersonic flight. Supersonic flight is when something is traveling faster than the speed of sound, which is 343 m/s. Of course for the past 70 years this has only been done by noncommercial planes. Well, Nasa is currently working on making supersonic flight a reality for commercial planes. That would mean that you can travel from New York to Los Angeles in 2 hours. Now it takes over 6 hours. Nasa has been researching shock waves, cruise efficiency, and the effect of sonic booms on the environment. Sonic booms are loud boom sounds caused by the waves of sound. It occurs when an object travels at supersonic speed. If Nasa is able to make this a reality in will revolutionize modern travel.
  15. 1 point
    The clean and jerk is an Olympic weight lifting movement where the lifter pulls the the bar from the ground, catches it in a squat, stands up from the squat and thrusts the bar over their head. The clean is performed by pulling on the bar off the ground with a high velocity, once the bar reaches about chest height, the lifter drops under neath the bar and catches it on his shoulder, and sits in a low squat position. The lifter then pushes up with a high velocity to stand back up, this is the clean. The jerk part of the movement is fairly simple. The lifter dips their hips down how ever far they desire, then they thrust the bar up with a high velocity, kick their legs out in a lunge position, catch and hold the bar at rest above their head.
  16. 1 point
    Some people might say that snow or rain or other forms of bad weather would be the easiest way to cause people to drive slower and safer, but in reality a police officer sitting on the side of the road is the easiest way to make everyone slow down. You will never see a more drastic change in people's driving behavior. A person could be going upwards of 80 mph but the second they realize their is a police officer, they immediately slow down usually to below the speed limit to guarantee they don't get pulled over for speeding. The radar guns police use, uses physics to help find out if the driver is going too fast. As the police officer aims the radar gun at cars passing by, the gun sends out radio waves toward the car. Then, the radio waves hit the car and bounce back toward the gun. The gun then measures the frequency of the returning waves, so the faster you are going toward the police radar gun, the higher frequency the waves will be. This concept uses a lot of physics including radio waves, frequency and also the Doppler effect. Since the car is moving toward the gun, the frequency of the returning radio waves will be much higher.
  17. 1 point
    Now that I've reached the last blog for this quarter, I thought I'd take it full circle back to music. Specifically the drum set. Drums are known for being loud and helping other members in a band keep the beat of a song. This is due to how they are built. Let's talk specifically about the bass drum. This is the largest drum, seen on the bottom of the drum kit and normally played with a foot pedal. The reason that it's the biggest drum is so that it can make those loud, deep sounds. The foot pedal strikes the skin of the drum, causing it to vibrate. This vibration sends the sound waves out through the drum, where they bounce around the inside of the drum. Having such a wide radius and depth, the drum allows the sound to reverberate within the drum before heading out to greet the audience's ears. This keeps it at a low frequency and allows the sound to build up and strengthen, becoming louder and reaching farther before dissipating.
  18. 1 point
    Like everyone else, this is my first blog post for Physics C. Outside of school, I really enjoy to golf, play CYO basketball, be around my friends or attend sporting events. I love to watch baseball and football, and that's how I spend all of my time that isn't taken up by calc, physics and econ. My biggest strength in school is that I generally understand things pretty quickly, but I could definitely benefit from an improved work ethic. In the future, I plan on attending college like most other kids in my position, but I really have no idea what I want to do once i get there. I am taking AP Physics C because, as I said, I really have no idea what I want to do in the future, so I figured the best way to set myself up for the future was to take the most challenging classes possible. What I do know about my future is that I want to be as successful as possible, and really intend on selecting a major that will best set me up for this. You're always told to major in something that you are passionate about, but I don't think many colleges offer a major in the arts of watching the New York Mets. Through this class, I hope to gain a better work ethic and improve on working in a setting like this where you have to learn a lot of things more independently. I also hope to understand Physics to a greater extent than I do now, because I feel like this topic could definitely be an important one for me going forward. The thing I am most excited for this year is the day I finish my final AP exam, because once that day comes I will have survived senior year. I am very anxious for the decisions I will have to make about my future over the course of this year, especially regarding college. Just saying the word college is enough to make me anxious. I am definitely excited to see what's in store for me in this course, and I look forward to writing many, many more blogs.
  19. 1 point
  20. 1 point
    My dear friend Ryan needed a car. I was gracious enough to give him the beat up ford in my garage. However, physics have worked against this car since 2004. We spent hours trying to get this car to even turn the headlights on. The physics of electrons traveling between my brothers battery and the fords. It took a solid 2 hours in order to get the car to turn over. Finally, my brother got into the car and drove it a bit to get the rust and dust off the car. As a result, the car stalled out and died 20 meters (not yards) down the street. Gravity quickly took the wheel, and the car stopped. Physics never stops working against the ford and Ryan.
  21. 1 point
    Heh. It is really called the Drowsy Chaperone but you know. Details. It is often misread as this way plus words that don't actually exist tend to get people's attention more often, so yeah. Got your attention now. The Drowsy Chaperone is an awesome and hysterical musical within a comedy and in case you are out of the loop, it is the musical for IHS this year! (distance cheering: yayy!) COME SEE THE MUSICAL MARCH 26 AND 27 AND 28 AND 29. Okay anyway, without spoiling the show, there is one scene when all the lights in the protagonist's apartment go out, and he is left in darkness. The superintendent of his building shows up and tells him that they were resetting the breaker in the basement, and when it came back on, the lights tripped and the whole building went dark. So it happens. It's normal. The lights went out because the electrical circuit was opened, or broken. Because the loop was not closed, the current could not reach the lights, and the entire circuit was basically rendered useless.
  22. 1 point
    we have been studying electricity in physics and to make it more interesting Mr. Fullerton brought in a vandergraph. Mr fullerton asked for volunteers to get shocked and of course my entire volunteered. In one hand I had Brenda and on the other I had Kara. Kara freaked out a little while we were charging up shocking everyone behind her in our line. This gave me the opportunity to shock the rest of the class . and so I raised my hand slowly toward the piece of metal holding the ceiling tiles in place and when my finger was approximately three inches away from the metal I saw a mini lighting shoot out of my finger and into the metal while simultaneously electrocuting everyone else . This experience was a unexpectedly painful some might say it was even shocking.
  23. 1 point
    I am really good about managing my time and blogging, as you can see... But I figured I would talk about the physics behind... BOMBS!!! I mean, nuclear warfare (at least in theory) has become every-so-popular after the Manhattan Project in the United States for World War II. I figured it is only fair to address it for all the physics glory it deserves. Now, nuclear bombs can be split into two categories: bombs based on nuclear fission, and bombs based on nuclear fusion. However, both involve some sort of nuclear fission reaction at some point in the progress of the chain reaction (since that is all bombs are... one big, fun chain reaction!). First, lets address nuclear fission bombs. Nuclear fission bombs can also be split into two subcategories: uranium bombs and plutonium bombs. While U-238 is the most commonly occurring isotope of Uranium (92 protons, 146 neutrons), U-235 is the most valuable for nuclear weapons. On average, the fission of U-235 produces about 2.5 neutrons. A complete chain reaction of the fission of 50 kg of U-235, the approximate amount of Uranium in the bomb dropped on Hiroshima, could yield 500 kilotons of fissioned material. However, only 3% of that yield was achieved, given that most of the U-235 was dispersed in such a way that was spread to thin to continue the reaction. In order for the chain reaction to begin, the U-235 must reach a critical mass density. This is done by splitting such a critical mass of U-235 in half and placing each half on one end of the bomb. Then, when the bomb is ignited, half of the Uranium is shot like a bullet toward the other, creating a chain reaction, and therefore a nuclear explosion! A plutonium fission bomb works in a similar manner, using Pu-239 instead. However, a plutonium bomb is harder to ignite. The plutonium is modelled like a spherical core, the "plutonium pit", and placed in a shell of high explosives. When the explosives all detonate at the precise time, it forms a spherical shock wave, which creates such an extreme pressure that the plutonium core is compressed to critical mass density and begins its chain reaction. Plutonium bombs are preferred, once mastered, since only 10 kg of plutonium is necessary for a reaction. For fusion bombs, the hydrogen bomb is the name of the game. In order to begin the fusion reaction in a hydrogen bomb, a fission bomb needs to take place first in order to generate the high energy needed for hydrogen fusion. While normal hydrogen contains one proton, Deuterium is hydrogen which contains one proton and one neutron, and is preferred for a hydrogen fusion reaction. In a fusion reaction, deuterium and tritium, hydrogen with 1 proton and 2 neutrons, combine to create helium, a neutron, and energy. This causes lithium, also in the bomb, to combine with that neutron and create helium and more tritium and energy. This creates a chain reaction of creation and massive amounts of energy. When the warhead, a plutonium core fission bomb, is ignited in a fusion bomb, the fission emits x-rays, which reflects along the inside of the casing around the material for the fusion reaction, turning polystyrene foam into plasma, sparking another plutonium fission reaction. As the lithium deuteride is heated and compressed, it reaches the energy necessary for fusion, creating a massive explosion. This explosion is much more powerful than fission, creating massive amount of energy. It's crazy that even as far back as World War II, scientists were investigating the physics around these nuclear phenomena and harnessing it for weaponry! What an amazing feat combining physics, chemistry, and technology! Until next time, Fizzix Community, until next time.
  24. 1 point
    Friday, the day of Halloween I figured I would have a normal day. Have an easy day at school, then have Halloween fun after school. Well I found myself fighting a bear on Halloween instead. It was a tough fight but I managed to defeat the bear and skin it's bear fur and sell it for a profit. While carrying the bear hide I tripped and fell on a small rock and fractured my ankle. Just kidding, I didn't fracture my ankle after the fight, that was later. 3rd period, around 10 o'clock is when the action really happened. 3rd period is my gym period and I always go hard (Go hard or go home, right?). Well this time I wasn't too into the game and didn't go hard for the first time in a while. We were playing soccer and that involves a lot of forces and trajectory and what not. Unfortunately, one of the forces that class period was not applied only onto the ball. When a teammate passed me the ball I was casually standing there as another player ran up and pushed me, clearly I pushed him back though (normal forces and such). When I was pushed I tripped and fell and landed on my foot, sideways. Applying forces in all types of directions. I later went to Urgent Care and discovered that I had fractured my ankle and needed a split and crutches. I'm no longer allowed to apply forces to the ground (even though it returns the favor) because it will make my dusty ankle even worse.
  25. 1 point
    During my junior year of high school, my 5th year playing field hockey, i made several connections with field hockey and physics, whether i wanted to or not. As center mid for my team, i am involved in almost every play, so i see in every way, shape and form how physics dictates the way the game is played. In our sectional game i had a beautiful aerial that went over everyone and straight into the circle where a teammate was and the play lead to a beautiful goal, which helped us with the game! Later i then realized that the aerial that i played was a perfect example of a projectile. Since the ball was only being impacted on by gravity it made it the perfect real life application to physics. The ball when i lifted it flew in a path of a parabolic arc due to the fact that it was sent into the air at an angle. This also means that the ball had the same speed the minute it left my stick to the moment just before it hit the ground. The fact that the ball also became a projectile the minute it left my stick means that the horizontal components and the vertical components are different, and only the time is transferable between the two. For example the acceleration of the vertical component of the ball was 9.81 m/s^2 where as the acceleration for the horizontal component of the ball was 0. This is due to the fact that the ball had no force pulling it horizontally, which meant that the horizontal speed remained constant, however, there was a force acting on the ball vertically, gravity, this then pulled at the ball with an acceleration of 9.81 m/s^2 increasing the velocity of the ball as it fell. Field Hockey is truly filled with physics, and the projectiles are just one small component of the sport.
  26. 1 point
    In my soccer team's sectional game, there were many examples of Newton's 1st Law. For instance, when the ball was rolling towards me, I kicked the ball in the other direction which demonstrates Newton's 1st Law that an object in motion will stay in motion unless acted upon by a net force. My foot acted as the net force as I stopped the ball from rolling towards me, and I kicked it in the other direction. Also, as I kick the soccer ball, my foot exerted a force on the ball, but the ball also exerted a force back on my foot. This demonstrates Newton's 3rd Law which says that all forces come in pairs and that each object exert a force on each other which is equal in magnitude and opposite in direction. Friction also plays a role when playing soccer as well. As the ball is kicked along the turf, the turf creates friction against the ball. Friction opposes motion for an object, being the ball, sliding across another surface, which would be the turf.
  27. 1 point
    Having turned 16 on August 29th of 2014, I got my permit from the local DMV. After having driven for about a month, I took on the challenge of driving on the highway/thru-way to a dentist appointment. Although I was undeniably freaking out the entire ride, we safely made it to the dentists where they proceeded to do their thing. Now, post traumatic highway experience, I can see that there is a lot of physics not only involved in the car itself, but driving as a whole concept as well. For example, there are a variety of forces acting on the vehicle as it is in motion and not. In both circumstances, there is the force of gravity that pulls the car down as well as the normal force, or the ground "pushing back" on the car. There is also the force of friction that acts on the car both when it's moving and when it's static or not moving. Also having gone from neighborhood streets to the highway(s), the speed limits have changed. This means an increase in velocity and more acceleration (especially when first getting onto the highway...scariest part). So even though in the moment when all I could think of was not crashing, looking back, it shows that physics is a huge component in the little things we do everyday.
  28. 1 point
    In the spectacular finale to Buzz Lightyear's famous 'flight,' he lets go of the ceiling fan to free fall onto Andy's bed. Please. Consider the following: In my previous attachments, I used practical numbers, but not that would launch Buzz up to grab ahold of a ceiling fan 7m above the ground (which is the average height of a bedroom). So bare with me as we use that as his starting position now and still consider 2.426 m/s his initial velocity. Using the rest of my long-ago decided upon heights, I will now find Buzz's final achieved velocity before he sticks the landing in front of all the other toys. Tangentially, Buzz will free fall from a 7m height to a 1m height (the bed) ergo a change in height of 6m. Y-DIMENSION: y = 6m Vo = 0 m/s Vf = 0 m/s a = 9.81 m/(s^2) t = ? X-DIMENSION: Vo = 2.426 m/s Vf = ? a = 0 m/(s^2) t = ? To find time, we use the free fall equation in the y-dimension. t = [(2y) / a] ^ (1/2) t = [(2(6)) / 9.81] ^ (1/2) t = (12 / 9.81) ^ (1/2) t = 1.223 ^ (1/2) t = 1.106s Now we have, in the x-dimension: Vo = 2.426 m/s a = 0 m/(s^2) t = 1.106s And as an equation we know that: Vf = Vo + at So plugging in...huh. Acceleration will again cancel out. So the final velocity will AGAIN equal the initial. 2.246 m/s? Or at this point - really ANY velocity you end up with, based on actual measurements, will tend to remain generally constant over the course of Buzz Lightyear's crazy journey! Yet, we can put it all together and realize that this entire journey still did only expanded over the length of one bedroom and a one minute long Pixar scene! So I guess that's more believable than not. That's distance is 'x.' x = (Vo) (t) + (1/2) (a) (t^2) x = (2.246) (1.106) + (1/2) (0) (1.106)^2 x = 2.484 + 0 x = 2.484m That's it! Four aspects of fzx in 2.484m! But more importantly, four aspects of fzx in Toy Story! And that's all that really matters. To me, anyways "I'm packing you an extra pair of shoes; and your angry eyes, just in case." ~Mrs. Potatohead Sometimes, I find fzx extremely frustrating and slightly maddening. But it always pays to walk the distance. I guess that's all I've got to say on this childhood classic. But I'm sure I'll be BRAVE enough to examine another Pixar movie, quite soon
  29. 1 point
    Today my fellow phys-x students, I will discuss how well the game Space Engineers simulates Newtonian physics. Long story short, it simulates real world physics very closely. First of all, what is Space Engineers? Space Engineers is a sandbox game about engineering, construction and maintenance of space works. Players build space ships and space stations of various sizes and utilization (civil and military), pilot ships and perform asteroid mining. Space Engineers utilizes a realistic volumetric-based physics engine: all objects can be assembled, disassembled, damaged and destroyed. We will be looking at the destroy part of it all. The developers made the game to follow newtons laws, which means that it can represent momentum, the product of the mass and velocity of an object, as well as impulse, the integral of a force with respect to time. If you build a massive star ship, and crash a small fighter into it, the star ship is barely affected by the crash. Depending on the proportion of the masses, the star ship will respond by moving at a very slow pace. If you we to push the fighter slowly against the ship and continue to exert force, the star ship will accelerate. If you were to crash the star ship into the small fighter, well... lets just say you may not want to be in the fighter due to some...obvious reasons. Here is a cool video on the crashing of ships, and how it represents momentum. All in all, Space Engineers is a very good game, and with the use of multiplayer LAN, it would be fun to use in the classroom. *Cough Cough*. I seem to have developed a symptom with requires me to cough through text. *COUGH COUGH*
  30. 1 point
    For the most part, humans have good sight. A lot of time and effort during our modern era is put into making TV and computer screens at a higher and higher resolution in order to make things look as "real" as possible - that is, to make the pixels onscreen indistinguishable from what we would normally see. But how good are our eyes really? Lets find out. Before all of this, I'll direct you to a nice, short, but informative link (https://xkcd.com/1080/), courtesy of xkcd. A good representation of how we see, it outlines the many different parts of vision very nicely. Focusing primarily, however, on the "resolution" of our field of vision, that is, how many "pixels" we can see, we can see it varies. Right in the center few degrees, in the foveal region, we can see stuff quite clearly, which makes sense, because we're looking at it. However, the blurred characteristic of the surrounding areas isn't just because we aren't focused on it, but because there simply isn't as much data provided there - much less, in fact. While our center of vision is comparable to a high-res camera, the surrounding areas are much worse quality, with the entire area outside of the center ~10 degrees containing a fraction of the data that the center area does. Our brain just fills in the gaps. So while at times our vision is quite good, other parts could use some work. And even with the high detail of our foveal region, you still might not need that new HDTV. Based on how far away you're sitting, it might not even be noticeable, so don't waste your money.
  31. 1 point
    Physics is simple once you get the hang of it! At first the concepts are confusing, but practice makes perfect and it becomes much easier. By the time the test rolls around it's much easier. When I look back on my tests I wonder why I ever had trouble with the chapters. I am so glad I can say this now!
  32. 1 point
    During my first week of physics class i felt completely lost! I wanted to understand physics so badly! I love math; so I was confused as to why I was not understanding physics. We were learning kinematics and I had no idea what was happening. What's velocity? What's acceleration? These were some of the questions I was asking myself. After much practice I finally got the hang of it! Looking back at kinematics it seems so easy! Hopefully with some of the harder material I will feel the same way! One of my favorite experiments we did in class was watching what happens with an electroscope. An electroscope is a model that demonstrates the movement of electric charge. Check out the video I posted below to learn all about an electroscope!
  33. 1 point
    So, I am aware that you guys have been doing E&M for a while, so while this is a little late, it should still help. Now, I know that not everyone likes E&M (just ask Mr. Fullerton how much I liked it ). Well, I too am taking E&M (for the third time), and I have finally cracked the code for success (took me long enough). Now I, the girl who cannot do the right-hand rule (still), is not only understanding E&M, but solving it CORRECTLY. How you ask? Well, here are some tips: 1. Don't read the book. Seriously. People who say they read the book and found it helpful either a) didn't read the book b ) are lying or c) is Mr. Fullerton. Instead, DO THE PRACTICE PROBLEMS. The book has some really good example problems that are similar to the ones you do in class, but different enough for practice, and then you have the step by step answers. Plus, some of the examples are actually the derivations for electric fields, and trust me, it's a good idea to do those again. 2. Ask questions. Think you understand what you did in class? Think again. Very few people that I know understood E&M perfectly the first time. Mr. Fullerton doesn't bite, so ask him questions. (The worst that he will do is throw you out a window ) 3. Actually do the homework. I mean do the homework on your own, not do the homework with the answer right in front of you so you can glance at it for every step or copy someone else's procedure and plug in your numbers. You may think, Oh, I'm not going to do that. I will only look at the answer key when I need to. I know. I was you. But I stopped doing that because I realized that I was looking at the answers too frequently for it to be MY work. Now I'm not saying don't use the answers. I love answer keys (just ask Mr. Muz). But don't become so dependent on them that you can't solve the problem on your own. 4. Ask for help. The most important of them all. If you need help, you are not going to learn anything by ignoring it, hoping it goes away. In E&M, your worst nightmares never just "go away". They linger in the background and attack when you least expect it, causing you to have a mini breakdown. I know. I've been there. Two days ago. But then I went to my professors office hours and it turned out I knew more than I thought. Shocker, I know. These things have helped me to survive E&M (barely). And if I can survive, so can you. PS: Since I am taking E&M this semester, I will post helpful tips, problems, derivations, equation dumps, anything that I think might help you, the new Physics C students, to survive... As long as I have time. I do have my own homework.
  34. 1 point
    "Mathematics, rightly viewed, possesses not only truth, but supreme beauty — a beauty cold and austere, without the gorgeous trappings of painting or music." —Betrand Russell Physics is, in essence, applied mathematics. It's how math applies to life, and the results thereof. And math is... beauty? That's not how one would usually think. However, there is a certain beauty to math and how everything resolves itself when it is applied. The way tree growth and snowflakes resemble fractals, light waves follow the simplicity of a sine curve, a top wobbles back and forth, light bends around a magnifying glass - heck, we learned some of these last year in physics B. But while analyzing the theory behind it, how many of us stepped back to think of the beauty? However I explain it, watching it makes it better.
  35. 1 point
    Recently for Physics, we were assigned to create a catapult, which we then launched in class on Friday. This was a crazy experience to undergo! My partner and I had to create several Vi, Vf, d, a, t tables to figure out which catapult design would launch the softball producing the possible maximum distance. Unfortunetly, our plan didn't work out the best and the softball only went a distance of one meter, but that isn't the point. We figured out that if we were to launch the softball at an angle of 45 degrees, we should be able to get the maximum distance feesable from our catapult. To make sure that this theory is infact accurate, we tested out different angles in our equations like 40 and 50 degrees just to be sure that our calculations were true. The project, I felt, was very informative and taught me a lot. Not just with working with the equations but also working with tools to create a successful object using what we have learned in class!
  36. 1 point
    It was hot. REAL HOT. I just had gym and I realized I had fysics next period...all the way on the third floor. Dun Dun Duuuuuuuuuuun. I knew by the time I got up there I would be dying of exhaustion and be sweating profusely. Its not looking good on this horrendousjourney. As I began to climb,as I expected, I started to sweat more and more. I wondered what terrible thing would cause this to happen to me and then I realized it was all fysics fault. I wanted to figure out how much extra work I am doing by going to third floor instead of the first, so I calculated the amount of work to clib the climb the stair. To determine this I assumed the stairs have a height of 7 inches. I also remembered my work equations from fysics B. W=∆Et to find ∆Et I must find my change in potential energy, with respect to the first floor. My change of energry from the first floor to the top would be a change in potential energy which is the equation ∆Et=mg∆h. Assuming each step is 7 inches and there was 42 steps the change in height is 294 inches. To convert this to meters I must use the conversion of 1 inch= 0.0245 meters. So (294)(.0245)=7.203 meters. I also have to do a conversion of my weight in pounds to mass in kg. The convertion for this is 1lb=.453592kg. (135)(.453592)=61.22142kg. I then use both of these conversions to plug into the equation ∆Et=mg∆h. ∆Et=(61.22142)(9.8)(7.203), ∆Et=432.15833Jules ∴ W=432.15833Jules. That's a lot of work before we do work!
  37. 1 point
    After many, many long hours and tons of great feedback from physics teachers across the globe, I'm thrilled to announce the AP Physics 1 Essentials, a guidebook / review book for the upcoming AP Physics 1 course, is due for release in late August. I began work on this project in the summer of 2010 when conversations at the AP Annual Conference in Washington, D.C., led to a number of different teachers talking about the need for a detailed course breakdown to support the change, followed by discussion of what the true cost of the change would be in terms of instructor hours, curriculum rewrites, resource revisions, etc. It was obvious there was going to be a need for a guidebook for the course, and my goal was to provide a short "everything you need to know" book that was easy-to-read, fun, engaging, and inexpensive so that students could pick this up as a guidebook/review book without having to purchase entirely new textbooks to support the changing course. I quickly picked up a following of fans eager to see the project succeed and more than willing to contribute what they could, from early draft versions of the Division of Content plans (which only vaguely resemble the final curriculum guides), to proposed and/or recommended formula sheets, to technical reviews, editing, "wish lists," etc. I've been amazed at the positive response and helpfulness of so many, that has allowed this project to progress through multiple obstacles, from revised content and organizational issues through technical hurdles such as a corrupt book file caught nearly 80% into the rough draft. I guess this qualifies as checking the "nothing worthwhile is easy" box on the project. I'm grateful to my family for allowing me the many hours early in the morning, late in the evening, and during the summer to work on this effort. As I write this, for example, I'm on vacation with my family. It's almost 6 am, I'm watching the Allegheny River flow past, and just saw a bald eagle fly up the river, not 30 feet from where I sit typing. I also must thank the many physics instructors across the globe who have contributed in so many ways, from editing to hints to encouragement... but I need to say a special thank you to the APlusPhysics community. The website began as a tool to use in my own classroom, and quickly grew so popular that I felt compelled to continue to expand it at the request of its users. With more than 30,000 students using it EACH MONTH, I've been absolutely floored by the number of thank-you messages, letters of encouragement, and success stories contributed voluntarily by community members. You guys set me on this path, made the site and the books successful, and it's your encouragement and support that have kept me at this project through the wee hours of the night and long hours of frustration. Moving on to the final product… I'm proud to say the book is finished. Sure, it has a few more edits to make, a few more tweaks here and there, but everything is on track for a late August 2013 release. My long-term goal was to have the book released one year before teachers began teaching the revised AP course, and it appears we'll hit that deadline on the nose (with special thanks to the AP for delaying the change a year from the date I was originally told back in the summer of 2010). I'm hoping you find it valuable to your courses and studies. This book was written as the guidebook I would want my students to have for the course. Not a full standard physics textbook, because my students don't learn and fully read their physics textbook (except in snippets), but rather a book designed to be used as written, read AND understood, with tons of example problems and solutions. Thank you so much for your tremendous support. I hope you enjoy AP Physics 1 Essentials as much as I enjoyed the opportunity to work with you and so many other amazing people on this project. Make it a great day!
  38. 1 point
    When your in the shower belting out songs so know one can hear you i bet you have never thought that singing would have anything to do with physics. Well youre wrong! It totally does! People can not only hear your singing but they can also feel it! By singing, your voice creates vibrations that form into waves. Sound can be represented in wave form. The amplitude of the wave (the height of the wave) is represented by how loud you are singing. The amplitude is the degree of displacement of teh vibrator. Singing at a louder pitch create more vibrations, while singing at a soft pitch doesnt create as much vibration. This can be heard and felt in a car also. Depending on what the volume and the bass in the car is set at a person sitting in the car can feel the vibrations. Usually you cant feel the wave vibrations of a voice that isnt amplified unless you are on a surface that can allow waves to pass through it easily. For example, you can feel vibrations through would very well. So next time your mom or dad say stop singing you can tell them i am just practicing my physics
  39. 1 point
    The Quantum Physics of Alice and Wonderland Lewis Carroll had some interesting ideas in his works, especially in Alice in Wonderland. Alice falls asleep in a meadow, dreams of plunging through a rabbit hole, then finds herself too large and then too small. She meets new and bizarre characters on her way as well, including the Cheshire Cat, the Mad Hatter, the March Hare, and the King and Queen of Hearts. She experiences wondrous, often strange adventures, trying to reason in numerous discussions that do not follow the usual paths of logic. Finally she totally rejects the dream world and wakes up. This book almost mirrors the theories of quantum physics. Things in extremes: things too small and too large. Just like the tiniest particles you can think of--quarks and electrons--and the biggest thing you can think of-- galaxies, black holes, and more recently discovered, the Large Quasar Group. http://www.livescience.com/23232-smallest-ingredients-universe-physics.html http://www.huffingtonpost.co.uk/2013/01/14/quasar-cluster-largest-object-einstein_n_2470562.html Quantum disobeys many theories in classical physics. Especially many of Newtons claims, and now even Einstein's. It reveals laws which could have the slightest bit of chaos to change entire equations already used in classical physics and logic. Alice does crazy things that would not have normally been seen as proper or normal. She gets really big, then small, falls into rabbit holes, talks to cats... And, everything in physics is about a cat as we all know, and the Cheshire Cat explains to Alice that everyone in Wonderland is mad, including Alice herself, hence it must be right. The Cheshire Cat gives directions to the March Hare's house and fades away to nothing but a floating grin. Cats can do everything. They can be alive, be dead, be alive and dead (vampire cats), not in a box, in a box, or floating in mid air with only its teeth showing. Many things in Alice in Wonderland are illogical or just confusing and weird, this is all you need to know about quantum physics. The mallets and balls in a game of croquet (in this wonderland) are live flamingos and hedgehogs. And there are illogical laws much like in quantum physics with the Queen frantically calling for the other player's executions. Amidst this madness, Alice bumps into the Cheshire Cat again, who asks her how she is doing. Obviously some cats worry. But the King of Hearts interrupts their conversation and attempts to bully the Cheshire Cat, who impudently dismisses the King. The King takes offense and arranges for the Cheshire Cat's execution, but since the Cheshire Cat is now only a head floating in midair, no one can agree on how to behead it. In the Schrodinger's cat, there is a cat enclosed in a chamber with a vial containing hydrocyanic acid, a radioactive substance. If even a single atom of the substance decays during the test period, a relay mechanism will trip a hammer, which will, in turn, break the vial and kill the cat. The Copenhagen interpretation of quantum mechanics implies that after a while, the cat is simultaneously dead and alive. (This is all in theory.) So similarly, in this case, no one can decide whether the cat is both dead and alive, or either dead or alive in this wonderland, no one can decide how to behead the cat. Alice's wonderland is much like the theories and laws of quantum physics. There could be the most structured laws in physics, but the tiniest bit of randomness occur in quantum physics which causes much stress, chaos, and a lot of calculus for scientists and science itself. Such complex theories and complex and imaginary numbers make this wonderland of physics. I can understand how Carroll, being a man of mathematics, could make such a book. Mathematics is so literal and straightforward, and makes you a little mad. Some theories make you wonder whether we are existing at all, and whether time is real. Math can make you crazy just by trying to explain how 1 is larger than 0, or how to describe a straight line in 20 pages. Alice in Wonderland is a book which has underlying tones of reality and debate over many theories of quantum physics. This does not surprise me because Carroll was a rather exceptional student of Oxford, where he studied mathematics and was great at Aristotelian logic. The author's life and work has become a constant area for speculation and his exploring of the boundaries of sense and nonsense which has inspired a number of psychological studies and novels. They are against Alice's common sense: 'I can't believe that!' said Alice. '... one can't believe impossible things. But the White Queen has her own principles: "Why, sometimes I've believed as many as six impossible things before breakfast.' (from Through the Looking Glass) Which is possible...and impossible! Everything, anything and nothing may and may not occur in quantum physics, but above all, only some of it is in theory, the rest is true, and there is proof and evidence backing it all up. As for Alice in Wonderland, that�s up for you to decide. http://www.npr.org/2010/11/12/131274183/the-spookiness-of-quantum-mechanics
  40. 1 point
    When we think of Kelvin temperature, we think only in positives, since zero Kelvin is also absolute zero, the point at which a particle has absolutely no energy, and thus no movement or vibration. Scientists in Germany, however, managed to create the hottest temperatures ever recorded by creating a substance with a negative Kelvin temperature. How is this possible? Well, in order to understand this bizarre concept, we have to go back to our definition of temperature. In thermodynamics, we typically refer to temperature as the average temperature of the particles in a substance. However, because quantum physics deals with energies as the smallest of small scales, and because quantum physics is, from a mathematical perspective, about probabilities, it makes more sense to define temperature as the distribution of the energies of the particles in a substance. So, for example, a boiling pot of water would obviously have plenty of high energy particles buzzing around, but it would have a few low-energy particles too. We simply would pay them no mind because the average energy of the particles is consistent. To a quantum physicist, however, those few low-energy particles matter, because they form part of the energy distribution of the substance. By definition, when a substance has a positive Kelvin temperature, the particles start from a minimum temperature (absolute zero) and spread out toward higher energies. The German scientists, however, wanted to create a substance that started at a maximum temperature and spread toward lower energies. By definition, such a substance would have a negative temperature. Paradoxically, having a negative temperature makes the gas that the scientists created extremely hot. Since the particles start from a maximum temperature and spread to lower temperatures, and since energy flows from hot to cold, heat will always flow away from the negative temperature gas, making it the hottest thing we've ever observed. One of the other interesting properties of negative temperature gases is that they not only have the hottest temperatures, but negative pressures. Normally, a gas concealed in a container would spread out and apply pressure to all sides of the container. A negative temperature gas, on the other hand, causes the atoms in the container to cave inward, as if everything converges to a single point. Because dark matter is believed to have negative pressure as well, this characteristic of negative temperature gases leads scientists to think that studying them may reveal more to us about the elusive dark matter that is believed to account for a lot of "missing mass" in the universe. You can read more about the negative temperature gas and the study conducted by the German scientists here: http://www.sciencenews.org/view/generic/id/347370/description/Hottest_temperature_ever_measured_is_a_negative_one
  41. 1 point
    <p>Longboarding is a particular hobby where a bunch of different physics topics are covered by a simple act that doesnt take much energy by the rider, but can still experience great thrills and excitement. Different keytopics with in this activity include, motion and forces, friction and energy.<br /> Motion and forces are key components of longboarding. The forces in particular enable the motion to take place. The force of gravity acts on the longboard and its rider. The greater the hill (incline) the greater the angle off the horizon and this allows gravity to have more of an effect as it acelerates you down the hill and increase your velocity. Also if your mass is greater, then you contribut more wieght where the force of gravity will be able to act on more matter and allow you to possess a greater degree of motion.&nbsp;</p> <p>Friction is another key component in a couple aspects. First off, in order to stay more secure with the board, rubber shoes are ideal because they create the greatest combination for the force of friction with the grip tape on top of the board. This force of friction is what helps reduce your chances of falling off the board and getting seriously injured. Also the other component of friction is between the wheels which are composed of a hard plastic and the pavement where friction is at a minimum to allow one to go fast and smoothly.&nbsp;</p> <p>Also momentum is another topic to discuss. In this activity one can achieve a fast forward momentum due to the length of the incline and also the angle of elevation from the horizontal. If both are optimum, then 30 40 even sometimes 50 miles an hour at some extremes is a whole lot of speed, and falling would hurt alot. Which brings us to impulse, (change in speed) and this is what we care about most for safety aspects. If its a quick difference in speed, (quick impulse), like hitting a rock and haulting the board, then one cant handle and or absorb the shock in a controlled fashion resulting with some extra momentum not being transfered through the board to a stop but instead its converted to access speed and results in one flying forward onto the ground. So we want soft easy change in speed where we can slowly come to a stop so avoid cracks and or rocks in the road or else.&nbsp;</p> <p>Lastly energy and this has to do with potential and kinetic energy. Potential energy is before you star where if you go on top of a large hill, you have potential to go down on the longboard and when you go, the energy is in turn transfered into kinetic energy and this is your forward motion.&nbsp;</p> <p>All these components are what make up the physics facts of longboarding.&nbsp;</p>
  42. 1 point
    Last night I was at an awesome concert, but as I looked around, I realized how much physics can truly relate to everything going on around me. First of all, if you are at a concert, you expect to hear some music. That must mean that sound waves have to be traveling through the air for everyone to hear it. As I was sitting there enjoying the concert, I realized that the speed of sound in air at STP is 3.31x10^2 m/s! This made me extremely happy to have some background information on sound waves that most people don't have because they didn't take regents physics. I also knew that the closer I got to the stage, the higher the frequency and amplitude would be, and if I started heading towards the door, the amplitude and frequency would decrease, which illustrates the Doppler Effect. Also, there were some pretty awesome lights shining all over the stage and occasionally over the crowd. I was watching the colorful lights, when all of a sudden the electromagnetic spectrum came to mind. I thought about how out of the whole spectrum, there is only a small part that is made up of visible light. I also thought how all the colors can come together and if they are reflected, that creates white, and if they are absorbed, that creates black. I also realized how fast light must be traveling, at a speed of 3.00x10^8 m/s! This information gave the concert a whole new meaning. As I was looking around at the crowd, I noticed that a lot of people seemed to be crowd surfing, but many of them fell to the ground, which looked pretty painful. I then wondered what their final velocity would be when they hit the ground, so I decided to use one of my kinematics equations to figure it out. First of all, a person's initial velocity would be 0 m/s, because they are just lying on top of the crowd right before they fall. They would probably fall a distance of 2.5 meters, and their acceleration would be 9.81 m/s^2. I then could use the equation vf^2=vi^2+2ad, and once I plugged in all of my known values, I figured out that their final velocity would be about 7 m/s.
  43. 1 point
    http://www.youtube.com/watch?v=a19fhhJcs1E Although a bit lengthly the significance of this video takes a tour of the life and death of starts and what they have to offer in the universe. Also, some facts about stars include that it is large celestial body composed of gravitationally contained hot gases emitting electromagnetic radiation, especially light, as a result of nuclear reactions inside the star. Stars are wondrous things that we know little about because of our limitations in technology. However, we learn more and more each day. they come in a variety of colors and sizes. Blue stars are hotter then white stars, white stars are hotter then yellow stars. Red stars are the coolest Ive always wondered what would happen if the sun completely blew up while humans are still alive to witness it
  44. 1 point
    Alpine skiing is one of my favorite things to do. And in thinking about the sport there is a lot of physics involved! Downhill skiing involves gravity and friction more than any other sport I can think of. The most important equipment to any ski racer is their skis, this involves an amazing amount of maintnance. Taking care of a good pair of race skis includes sharpening them after each use and waxing them as well. Waxing skis has a lot to do with the physics of the sport. What waxing does is it fills in all the little scratches and grooves worn into the skis which are unavoidable after use. Having these little grooves filled in provides the racer with the smoothest surface possible for the ski to travel over the snow, and the smoother the ski, the faster it will carry the skier. sharpening skis also has a lot to do with the physics of the sport. While waxing the skis is an effort to reduce friction, sharpening skis is an effort to induce more friction. around a turn the edge of the skis is responcible for holding the full force of a skier while at the most powerful part of the arc of the skiers path. Around any turn in a race coarse a skier can withstand up to 4G of force at high speed, and all that force is deflected straight to the edge of the skis which in turn must be able to grip the snow well enough to keep the shape of the arc turn while under force. this diagram shows the different forces applied to a ski racer going around a turn in a race coarse: An interesting experiment occurs during almost ever race ive ever been to. you can always tell who doesnt take care of their skis by how they preform on the icy coarses. someone who doesnt bother to sharpen their skis can end up sliding around the turns instead of being able to cut into the snow to bend the ski into a nice arc shaped turn. overall, the sport of alpine skiing involves an incredible amount of physics, I wonder what aspects of other sports involve a lot of physics?
  45. 1 point
    As a volleyball player and also a physics student, it’s only natural that I came about the question as to how physics is related to serving and hitting. I knew that in order to jump higher, or to have a harder, faster serve or hit physics must be taking place. I came about these equations that relate to the physics behind this sport: Vf = Vi + at V^2 = Vi^2 = 2ad Finding the acceleration of a volleyball player would allow us to find out the speed of a player whose velocity is increasing or decreasing within a certain amount of time. As well as the player, the ball also has an acceleration. During a serve it is very likely that the ball has a constant acceleration. Throughout the distance of the ball being served, the velocity is constantly increasing thus the velocity is increasing at the same amount for these time intervals. Hitting is not all about contact and force. It also has a lot to do with timing. After the ball is set your brain is assessing the speed and placement of the set thus creating a time frame for your approach. With seeing the distance needed to travel and the velocity at which the ball is traveling, we can calculate the time needed to make this approach. This is found through the equation: V= d/t After doing this research I have concluded the many possibilities that are related between volleyball and physics. We can assess the acceleration of a ball or the timing of a player all through physics!
  46. 1 point
    Have you ever wondered what other animals see when they can see more electromagnetic waves than we can see? Well I started with this question and found that a common electromagnetic wave that other animals can see is infrared waves. There are three different types of Infrared waves, near, mid and far. In the following You Tube video Imre describes how you can take pictures of near Infrared waves using your camera. Even though it wasn't exactly what I was looking for the pictures give you an idea of what an animal might see and since my brothers are both photographers it reminded me of them. One of the facts that I found fascinating about Infrared Waves was that the far Infrared waves actually represent thermal waves which represent heat. Thermal Heat can be felt as heat from the sun and also can be found in fast food restaurants. Far infrared waves are closest to microwave waves which can explain why they can be felt as heat. Snakes would then use far infrared waves to see since they detect what is around them by the heat sensing organs in their face. Vampire bats can also use infrared waves to sense their warm blooded prey. Bugs use their antennas to detect infrared rays one reason is to detect prey. Beetles on the other hand detect infrared waves in order to find forest fires. After finding a forest fire they lay their eggs in the burnt wood. A different example is why NASA uses infrared waves to take pictures of objects in space. They take pictures of Earth in Infrared to help people study the clouds. For example they can see different layers of clouds with different temperatures. On NASA's website you can see a picture of Earth with darker warmer colored clouds closer to the Ocean and whiter clouds inland and close to the arctic. The colors you see with visible light also are made up infrared light as well. In one of their pictures you see a tree and waves reflecting off the grass one wave is visible light, which is why we can see that the grass is green, and the other is infrared light. When you take a picture of the grass and the trees with an infrared camera or camera lens, you see that the grass is mainly red which means it is either reflecting or giving off the infrared waves hitting it. This would explain why in the video they get better pictures when it's a bright sunny day because with more of the sun's rays exposed to the Earth there is a better chance that the Infrared waves will hit the plants, and reflect off different surfaces. Also some of the infrared waves will make the objects hotter that it is reflecting against also helping the camera to detect the infrared waves. Links to websites used: http://science.hq.nasa.gov/kids/imagers/ems/infrared.html http://www.mapoflife.org/topics/topic_311_Infrared-detection-in-animals/
  47. 1 point
    there has been a large amount of misconception around this topic, a major contributor being the fact that people mix cornstarch and water and call it a non-newtonian fluid, when in fact it is only a colloid. colloids are not fluids, as they are heterogeneous, consisting of liquid and fine particle mix. they have changing viscosity because the particles cant flow away as fast as the liquid, and are bunched together as a pseudo solid. this is different from a non newtonian fluid because the fluid changes viscosity because it is in a near-crystalline state, and acts like a crystalline solid as pressure is applied. some examples of this are jolly ranchers(corn starch), some types of bullet proof glass, and shampoo
  48. 1 point
    i have a problem. every time i pick up a cat to let it fall to its death, it manages to turn around mid air and land square on its feet, even when im not giving it any initial rotational speed. the law of conservation of angular momentum says that the cat can not start rotating after i have dropped it, assuming it starts with no angular momentum at all. so how they do it? turns out, they actually bend themselves into a v shape in mid air, breaking their rotational axis in two. this lets them turn their front half against their bottom half via muscles in their torso, resulting in both rotational motion along the center of mass, and along each side of the v they created with their body. this allows them to quickly spin around while still conserving their total angular momentum. when theyve turned 180 degrees, the cat simply bends out from the v shape, into what is more or less a line, in which state the cats is not turning at all, because the net angular momentum must be zero, conserved from the beginning. therefore, cats are immortal.
  49. 1 point
    last year with Mr. Powlin we made some simple water bottle rockets after the ap exam. as we designed and built, we had a basic understading of what our rockets were supposed to look like, but for the most part were in the dark as far as the technical physics behind it. this is what i hope to explain. the common expression "this isnt rocket science" may have you expecting long equations with foreign symbols, however simple rocketry in its essence is counterintuitively pretty simple. for the type of rockets we made last year, only one condition is required for it to maintain its orientation, being that the center of mass must be higher on the rocket than the center of drag. This is why Mr. Powlin kept telling us its better to have more weight at the tip, the farthest point ahead of the center of drag, the fins. keep in mind that this only accounts for the meathod of stabilization using friction, as there are other ways to keep a projectile oriented, such as the use of gyroscopic forces, as used in bullets. PS, if you want to calculate more complicated aspects of rocketry, you will run into some pretty nasty equations.
  50. 1 point
    This being my first blog post, i feel obligated to comply with the requests of Mr. Fullerton, and share with my loyal readers some things about myself and my outlook toward physics c. To describe my background, i would say that i have a wide range of interests, a large portion of which are science related, including microelectronics, circuitry, optics, botany, and laser physics, and a small amount of computer sciences, though i am not very good at it. the main reason i am taking physics c is because my brother tells me calculus is helpful for things, and simply because i am fond of the subject. last year, Mr. Powlin told us that c is more focused on electricity and magnetism than b, which is something i would like to learn more about. the bulk of my anxiety for this class stems from the fact that there is a lot of work to be done, something i am not looking forward to. overall, i think this year will be a valuable experience. thus concludes my first transmission.


  • Newsletter

    Want to keep up to date with all our latest news and information?
    Sign Up

Terms of Use

The pages of APlusPhysics.com, Physics in Action podcasts, and other online media at this site are made available as a service to physics students, instructors, and others. Their use is encouraged and is free of charge. Teachers who wish to use materials either in a classroom demonstration format or as part of an interactive activity/lesson are granted permission (and encouraged) to do so. Linking to information on this site is allowed and encouraged, but content from APlusPhysics may not be made available elsewhere on the Internet without the author's written permission.

Copyright Notice

APlusPhysics.com, Silly Beagle Productions and Physics In Action materials are copyright protected and the author restricts their use to online usage through a live internet connection. Any downloading of files to other storage devices (hard drives, web servers, school servers, CDs, etc.) with the exception of Physics In Action podcast episodes is prohibited. The use of images, text and animations in other projects (including non-profit endeavors) is also prohibited. Requests for permission to use such material on other projects may be submitted in writing to info@aplusphysics.com. Licensing of the content of APlusPhysics.com for other uses may be considered in the future.

×
×
  • Create New...