
Posts
470 
Joined

Last visited

Days Won
1
Content Type
Profiles
Forums
Downloads
Blogs
Events
Store
Everything posted by Flipping Physics

Name: When is a Pendulum in Simple Harmonic Motion? Category: Oscillations Date Added: 20180422 Submitter: Flipping Physics Demonstrating when a pendulum is in simple harmonic motion. Want Lecture Notes? This is an AP Physics 1 topic. Content Times: 0:09 Reviewing simple harmonic motion 0:24 Showing a pendulum in simple harmonic motion 1:47 Velocities in simple harmonic motion 2:15 Accelerations in simple harmonic motion 2:57 A pendulum’s restoring force 5:07 A maximum of 15° Thank you to Anish, Kevin, and Olivia for being my “substitute students” in this video! Multilingual? Please help translate Flipping Physics videos! Previous Video: Horizontal vs. Vertical MassSpring System Please support me on Patreon! Thank you to Christopher Becke, Jonathan Everett, and Aarti Sangwan for being my Quality Control Team for this video. Thank you to Youssef Nasr for transcribing the English subtitles of this video. When is a Pendulum in Simple Harmonic Motion?

Name: Horizontal vs. Vertical MassSpring System Category: Oscillations Date Added: 20180422 Submitter: Flipping Physics Demonstrating the difference between vertical and horizontal massspring systems. Want Lecture Notes? This is an AP Physics 1 topic. Content Times: 0:12 The impossible frictionless, horizontal massspring system 0:44 It’s actually a vertical massspring system rotated 90 degrees 1:01 Similarities between horizontal and vertical massspring systems Thank you to Anish, Kevin, and Olivia for being my “substitute students” in this video! Next Video: When is a Pendulum in Simple Harmonic Motion? Multilingual? Please help translate Flipping Physics videos! Previous Video: Simple Harmonic Motion  Force, Acceleration, and Velocity at 3 Positions Please support me on Patreon! Thank you to Christopher Becke, Jonathan Everett, and Aarti Sangwan for being my Quality Control Team for this video. Thank you to Youssef Nasr for transcribing the English subtitles of this video. Horizontal vs. Vertical MassSpring System

 restoring force
 demonstrate
 (and 5 more)

Name: Simple Harmonic Motion  Force, Acceleration, and Velocity at 3 Positions Category: Oscillations Date Added: 20180415 Submitter: Flipping Physics Identifying the spring force, acceleration, and velocity at the end positions and equilibrium position of simple harmonic motion. Amplitude is also defined and shown. Want Lecture Notes? This is an AP Physics 1 topic. Content Times: 0:01 Identifying the 3 positions 0:43 Velocity 1:43 Spring Force 2:14 Amplitude 2:30 Acceleration 3:22 Velocity at position 2 4:12 Is simple harmonic motion also uniformly accelerated motion? Thank you to Anish, Kevin, and Olivia for being my “substitute students” in this video! Next Video: Horizontal vs. Vertical MassSpring System Multilingual? Please help translate Flipping Physics videos! Previous Video: Simple Harmonic Motion Introduction via a Horizontal MassSpring System Please support me on Patreon! Thank you to Jonathan Everett, Sawdog, and Christopher Becke for being my Quality Control Team for this video. Thank you to Youssef Nasr for transcribing the English subtitles of this video. Simple Harmonic Motion  Force, Acceleration, and Velocity at 3 Positions

 simple harmonic motion
 force
 (and 8 more)

Name: Simple Harmonic Motion Introduction via a Horizontal MassSpring System Category: Oscillations Date Added: 20180415 Submitter: Flipping Physics Simple Harmonic Motion is introduced and demonstrated using a horizontal massspring system. Want Lecture Notes? This is an AP Physics 1 topic. Content Times: 0:01 A horizontal massspring system 0:29 Equilibrium position and positions 1, 2, and 3 2:05 Demonstrating simple harmonic motion 2:53 Requirements for simple harmonic motion Thank you to Anish, Kevin, and Olivia for being my “substitute students” in this video! Next Video: Simple Harmonic Motion  Force, Acceleration, and Velocity at 3 Positions Multilingual? Please help translate Flipping Physics videos! Previous Video: Impulse for Two Objects being Attracted to One Another Please support me on Patreon! Thank you to Aarti Sangwan, Sawdog, Scott Carter, and Christopher Becke for being my Quality Control Team for this video. Thank you to Youssef Nasr for transcribing the English subtitles of this video. Simple Harmonic Motion Introduction via a Horizontal MassSpring System

 demonstrate
 restoring force
 (and 5 more)

Name: The Human Spine acts like a Compression Spring Category: Oscillations Date Added: 20180402 Submitter: Flipping Physics A horizontal spring is attached to a cord, the cord goes over a pulley, and a 0.025 kg mass is attached to the cord. If the spring is stretched by 0.045 m, what is the spring constant of the spring? Want Lecture Notes? This is an AP Physics 1 topic. Content Times: 0:07 Translating the problem 0:39 Solving the problem 2:26 Comparing to a vertical spring 3:30 Expansion vs. compression springs 3:56 The human spine acts like a compression spring Next Video: You Can't Run From Momentum! (a momentum introduction) Multilingual? Please help translate Flipping Physics videos! Previous Video: Determining the Spring Constant, k, with a Vertically Hanging Mass Please support me on Patreon! Thank you to Aarti Sangwan, Scott Carter, and Christopher Becke for being my Quality Control Team for this video. Thank you to Youssef Nasr for transcribing the English subtitles of this video. The Human Spine acts like a Compression Spring

 hookes law
 demonstration
 (and 9 more)

Name: Determining the Spring Constant, k, with a Vertically Hanging Mass Category: Oscillations Date Added: 20180402 Submitter: Flipping Physics A vertically hanging spring with a natural length of 5.4 cm is extended to a length of 11.4 cm when 25 grams is suspended from it. What is the spring constant of the spring? Want Lecture Notes? This is an AP Physics 1 topic. Content Times: 0:08 Translating the problem 0:54 The free body diagram 1:53 Understanding the direction of the Spring Force 2:46 Summing the forces 3:32 Common misconception when using Hooke’s Law equation 5:00 Using the magnitude of the displacement from equilibrium Next Video: The Human Spine acts like a Compression Spring Multilingual? Please help translate Flipping Physics videos! Previous Video: Hooke's Law Introduction  Force of a Spring Please support me on Patreon! Thank you to Aarti Sangwan and Christopher Becke for being my Quality Control Team for this video. Thank you to Youssef Nasr for transcribing the English subtitles of this video. Determining the Spring Constant, k, with a Vertically Hanging Mass

 hookes law
 demonstrate
 (and 7 more)

Name: Hooke's Law Introduction  Force of a Spring Category: Oscillations Date Added: 20180402 Submitter: Flipping Physics Hooke’s law is demonstrated and graphed. Spring constant, displacement from equilibrium position, and restoring force are defined and demonstrated. Want Lecture Notes? This is an AP Physics 1 topic. Content Times: 0:01 Robert Hooke 0:46 Compressing a spring using a force sensor 1:33 Graphing force as a function of position 2:14 Hooke’s Law 3:07 Demonstrating displacement from rest position 5:20 Demonstrating the spring constant 6:15 What the negative in Hooke’s Law means 7:02 The spring constant is positive 7:54 The restoring force 8:33 Elastic limit Next Video: Determining the Spring Constant, k, with a Vertically Hanging Mass Multilingual? Please help translate Flipping Physics videos! Previous Video: Instantaneous Power Delivered by a Car Engine  Example Problem Please support me on Patreon! Thank you to Aarti Sangwan, Jonathan Everett, Christopher Becke, and Scott Carter for being my Quality Control Team for this video. Thank you to Youssef Nasr for transcribing the English subtitles of this video. Hooke's Law Introduction  Force of a Spring

 restoring force
 equilibrium position
 (and 10 more)

Name: Force of Gravity and Gravitational Potential Energy Functions from Zero to Infinity (but not beyond) Category: Circular Motion & Gravity Date Added: 20180311 Submitter: Flipping Physics Calculus is used to determine the force of gravity and the gravitational potential energy between an object and a planet, inside and outside the planet. Equations and graphs are determined and discussed. Want Lecture Notes? This is an AP Physics C: Mechanics topic. Content Times: 0:01 Basic universal gravitation equations 1:07 Outside the planet 1:42 Assumptions for inside the planet 3:38 Deriving mass inside r 4:23 Determining the equation for force of gravity inside the planet 5:24 Graphing the force of gravity inside the planet 5:59 Determining the equation for universal gravitational potential energy inside the planet 7:37 Solving for the constant C 8:49 The equation for universal gravitational potential energy inside the planet 9:41 Looking over the graphs Multilingual? Please help translate Flipping Physics videos! Previous Video: Impulse for Two Objects being Attracted to One Another Please support me on Patreon! Thank you to Sawdog, Christopher Becke, and Scott Carter for being my Quality Control Team for this video. Thank you to Youssef Nasr for transcribing the English subtitles of this video. Force of Gravity and Gravitational Potential Energy Functions from Zero to Infinity (but not beyond)

Name: Impulse for Two Objects being Attracted to One Another Category: Circular Motion & Gravity Date Added: 20180311 Submitter: Flipping Physics In a universe devoid of anything else, two identical spheres of mass, m, and radius, R, are released from rest when they have a distance between their centers of mass of X. Find the magnitude of the impulse delivered to each sphere until just before they make contact. Want Lecture Notes? This is an AP Physics 1 topic. Content Times: 0:07 Translating the problem 1:26 Applicable impulse equations 2:13 Conservation of mechanical energy 3:28 Showing a common mistake 4:00 Solving the problem Next Video: Force of Gravity and Gravitational Potential Energy Functions from Zero to Infinity (but not beyond) Multilingual? Please help translate Flipping Physics videos! Previous Video: Mechanical Energy of a Satellite in Circular Orbit Please support me on Patreon! Thank you to Aarti Sangwan, Sawdog, Jonathan Everett, Christopher Becke, and Scott Carter for being my Quality Control Team for this video. Thank you to Youssef Nasr for transcribing the English subtitles of this video. Impulse for Two Objects being Attracted to One Another

 universal gravitational potential energy
 kinetic energy
 (and 4 more)

Name: Mechanical Energy of a Satellite in Circular Orbit Category: Circular Motion & Gravity Date Added: 20180304 Submitter: Flipping Physics The mechanical energy of a satellite in circular orbit is solved for in terms of universal gravitational potential energy. And the velocity of the satellite is compared to escape velocity. Want Lecture Notes? This is an AP Physics 1 topic. Content Times: 0:14 Types of mechanical energy of a satellite 1:21 Solving for the velocity of a satellite in circular orbit 2:34 Solving for the mechanical energy of a satellite 3:31 Comparing satellite velocity to escape velocity Next Video: Impulse for Two Objects being Attracted to One Another Multilingual? Please help translate Flipping Physics videos! Previous Video: Deriving Escape Velocity of Planet Earth Please support me on Patreon! Thank you to Jonathan Everett, Christopher Becke, Sawdog, and Scott Carter for being my Quality Control Team for this video. Thank you to Youssef Nasr for transcribing the English subtitles of this video. Mechanical Energy of a Satellite in Circular Orbit

 circular orbit
 escape velocity
 (and 9 more)

Name: Deriving Escape Velocity of Planet Earth Category: Circular Motion & Gravity Date Added: 20180225 Submitter: Flipping Physics Escape velocity is defined and illustrated. The escape velocity of planet Earth is derived. Want Lecture Notes? This is an AP Physics 1 topic. Content Times: 0:07 Translating the problem 0:42 Defining escape velocity 1:43 Conservation of mechanical energy 3:22 Initial and final mechanical energies 5:38 The escape velocity of planet Earth 6:19 Relating this to binding energy Next Video: Mechanical Energy of a Satellite in Circular Orbit Multilingual? Please help translate Flipping Physics videos! Previous Video: Deriving the Binding Energy of a Planet Please support me on Patreon! Thank you to Dan Burns, Jonathan Everett, Christopher Becke, Sawdog, and Scott Carter for being my Quality Control Team for this video. Thank you to Youssef Nasr for transcribing the English subtitles of this video. Deriving Escape Velocity of Planet Earth

 derive
 universal gravitational potential energy
 (and 4 more)

Name: Deriving the Binding Energy of a Planet Category: Circular Motion & Gravity Date Added: 20180218 Submitter: Flipping Physics Binding energy of a planet is defined and derived. Want Lecture Notes? This is an AP Physics 1 topic. Content Times: 0:21 Defining binding energy 0:48 Proving change in gravitational potential energy equals work done by force applied 3:03 Universal gravitational potential energy 3:39 The binding energy of a planet 5:16 An alternate way of solving this problem Next Video: Deriving Escape Velocity of Planet Earth Multilingual? Please help translate Flipping Physics videos! Previous Video: Universal Gravitational Potential Energy Introduction Please support me on Patreon! Thank you to Jonathan Everett, Christopher Becke, Sawdog, and Scott Carter for being my Quality Control Team for this video. Thank you to Youssef Nasr for transcribing the English subtitles of this video. Deriving the Binding Energy of a Planet

 planet
 nonconstant
 (and 5 more)

Name: Universal Gravitational Potential Energy Introduction Category: Circular Motion & Gravity Date Added: 20180212 Submitter: Flipping Physics Universal Gravitational Potential Energy is introduced and graphed. It is compared to the force of gravity. And the “zero line” is defined. Want Lecture Notes? This is an AP Physics 1 topic. Content Times: 0:11 “Normal” gravitational potential energy 1:33 Gravitational fields 2:22 Universal Gravitational Potential Energy Equation 3:07 Comparing gravitational potential energy to force of gravity 4:12 Graphing Universal Gravitational Potential Energy 5:35 The “zero line” for universal gravitational potential energy 6:05 Can universal gravitational potential energy ever be positive? 6:49 Gravitational potential energy at the surface of the Earth 7:57 Three things to be careful of. Next Video: Deriving the Binding Energy of a Planet Multilingual? Please help translate Flipping Physics videos! Previous Video: Gravitational Field Introduction Please support me on Patreon! Thank you to Dan Burns, Jonathan Everett, Christopher Becke, Sawdog, and Scott Carter for being my Quality Control Team for this video. Thank you to Youssef Nasr for transcribing the English subtitles of this video. Universal Gravitational Potential Energy Introduction

 gravitational field lines
 field lines
 (and 7 more)

Name: Gravitational Field Introduction Category: Circular Motion & Gravity Date Added: 20180205 Submitter: Flipping Physics The gravitational field is introduced and illustrated. For a constant field and a nonconstant field around a spherical object. Want Lecture Notes? This is an AP Physics 1 topic. Content Times: 0:01 The two force of gravity equations 0:55 The constant gravitational field equation 2:25 Gravitational Field Lines 3:16 What is a gravitational field? 4:33 The gravitational field equation around a spherical object 5:48 Drawing the field lines around a spherical object 7:02 Are gravitational field lines real? Next Video: Universal Gravitational Potential Energy Introduction Multilingual? Please help translate Flipping Physics videos! Previous Video: Number of g's or gForces Introduction Please support me on Patreon! Thank you to Tony Dunn, Christopher Becke and Jonathan Everett for being my Quality Control Team for this video. Thank you to Youssef Nasr for transcribing the English subtitles of this video. Gravitational Field Introduction

Name: Number of g's or gForces Introduction Category: Circular Motion & Gravity Date Added: 20180128 Submitter: Flipping Physics Description and examples of gforces or number of g’s. Want Lecture Notes? This is an AP Physics 1 topic. Content Times: 0:14 Equations for gforces or number of g’s 1:08 Number of g’s when at rest on the surface of the Earth 2:43 Number of g’s when in orbit 3:33 Apparent Weightlessness 4:20 How to experience apparent weightlessness in a car 5:22 Apparent weightlessness examples 6:05 Describing number of g’s again 7:08 More examples of number of g’s Next Video: Gravitational Field Introduction Multilingual? Please help translate Flipping Physics videos! Previous Video: Apparent Weightlessness Introduction Please support me on Patreon! Thank you to Sawdog, Christopher Becke, Frank Geshwind and Scott Carter for being my Quality Control Team for this video. Thank you to Youssef Nasr for transcribing the English subtitles of this video. Picture and Video credits: NASA Logo https://www.nasa.gov/sites/default/files/thumbnails/image/nasalogowebrgb.png Liquid Ping Pong in Space  RED 4K https://www.youtube.com/watch?v=TLbhrMCM4_0 Side view of plane in field  https://commons.wikimedia.org/wiki/File:Airplanes__Types__Kirkham_Triplane_manufactured_by_the_Curtiss_Engineering_Corp.,_Garden_City,_Long_Island._Side_view_of_plane_in_field__NARA__17341451.jpg TeslaRoadster2020128001  https://www.netcarshow.com/tesla/2020roadster/1280x960/wallpaper_01.htm STS120LaunchHiResedit1  https://commons.wikimedia.org/wiki/File:STS120LaunchHiResedit1.jpg Soyuz_TMA13_Edit  https://commons.wikimedia.org/wiki/File:Soyuz_TMA13_Edit.jpg Hong Kong skyscrapers in a night of typhoon.jpg  https://upload.wikimedia.org/wikipedia/commons/8/8d/Hong_Kong_skyscrapers_in_a_night_of_typhoon.jpg Number of g's or gForces Introduction

Name: Apparent Weightlessness Introduction Category: Circular Motion & Gravity Date Added: 20180121 Submitter: Flipping Physics Learn why astronauts in the International Space Station appear to have no weight. Want Lecture Notes? This is an AP Physics 1 topic. Content Times: 0:01 What is necessary for an object to be completely weightless? 2:34 Determining the acceleration due to gravity on the International Space Station 3:41 Why astronauts appear to be weightless 4:55 Why the International Space Station does not fall to the Earth 5:37 Objects in orbit experience apparent weightlessness 5:56 Other examples of apparent weightlessness Next Video: Number of g's or gForces Introduction Multilingual? Please help translate Flipping Physics videos! Previous Video: Dropping a Bucket of Water  Demonstration Please support me on Patreon! Thank you to Jonathan Everett, Sawdog, Christopher Becke, Frank Geshwind, and Scott Carter for being my Quality Control Team for this video. Thank you to Youssef Nasr for transcribing the English subtitles of this video. Apparent Weightlessness Introduction

 space
 weightlessness
 (and 5 more)

Name: Dropping a Bucket of Water  Demonstration Category: Circular Motion & Gravity Date Added: 20180114 Submitter: Flipping Physics Demonstrating the physics of dropping a bucket of water with two holes in it. Want Lecture Notes? This is an AP Physics 1 topic. Content Times: 0:17 The physics of dropping a bucket of water with two holes in it 0:57 The demonstration 1:18 Why water stops flowing out of the holes 2:43 Why it takes half a second for water to stop flowing out of the holes Next Video: Apparent Weightlessness Introduction Multilingual? Please help translate Flipping Physics videos! Previous Video: Altitude of Geostationary Orbit (a special case of Geosynchronous Orbit) Please support me on Patreon! Thank you to Jonathan Everett, Christopher Becke, Frank Geshwind, and Scott Carter for being my Quality Control Team for this video. Thank you to Youssef Nasr for transcribing the English subtitles of this video. Dropping a Bucket of Water  Demonstration

 apparent weightlessness
 free fall

(and 3 more)
Tagged with:

Name: Do You Feel Your Weight? Category: Dynamics Date Added: 20171219 Submitter: Flipping Physics No. You do not feel your weight. You feel the force normal acting on you. This video shows why and demonstrates what you feel on an elevator. Want Lecture Notes? This is an AP Physics 1 topic. Content Times: 0:22 Showing that you do not feel your weight 1:10 What does the scale actually measure? 2:10 Elevator example 3:12 Determining your apparent weight on the elevator 4:23 An elevator in free fall! 5:42 Apparent weightlessness Next Video: 5 Steps to Solve any Free Body Diagram Problem Multilingual? Please help translate Flipping Physics videos! Previous Video: Introduction to Equilibrium Please support me on Patreon! Thank you to Sawdog, Aarti Sangwan, and Christopher Becke for being my Quality Control Team for this video. Thank you to Youssef Nasr for transcribing the English subtitles of this video. Do You Feel Your Weight?

 apparent weight
 weight
 (and 6 more)

Name: Altitude of Geostationary Orbit (a special case of Geosynchronous Orbit) Category: Circular Motion & Gravity Date Added: 20180107 Submitter: Flipping Physics Calculate the altitude of a satellite in geosynchronous orbit or geostationary orbit. Want Lecture Notes? This is an AP Physics 1 topic. Content Times: 0:11 What is geosynchronous orbit? 0:47 Drawing the free body diagram and starting to solve the problem 3:02 Solving for the satellite’s angular velocity 4:05 Identifying the masses and radii 5:25 Defining “r” and solving for altitude 6:29 The physics works! Next Video: Dropping a Bucket of Water  Demonstration Multilingual? Please help translate Flipping Physics videos! Previous Video: Deriving the Acceleration due to Gravity on any Planet and specifically Mt. Everest Please support me on Patreon! Thank you to Aarti Sangwan and Christopher Becke for being my Quality Control Team for this video. Thank you to Youssef Nasr for transcribing the English subtitles of this video. Altitude of Geostationary Orbit (a special case of Geosynchronous Orbit)

 geosynchronous
 altitude
 (and 6 more)

Name: Deriving the Acceleration due to Gravity on any Planet and specifically Mt. Everest Category: Circular Motion & Gravity Date Added: 20171211 Submitter: Flipping Physics Derive the acceleration due to gravity on any planet. Find the acceleration due to gravity on Mt. Everest. And determine how much higher you could jump on the top of Mt. Everest! Want Lecture Notes? This is an AP Physics 1 topic. Content Times: 0:08 Deriving the acceleration due to gravity on any planet 1:54 Finding the acceleration due to gravity on Mt. Everest 3:16 How much higher could you jump on the top of Mt. Everest? Next Video: Altitude of Geosynchronous Orbit (aka Geostationary Orbit) Multilingual? Please help translate Flipping Physics videos! Previous Video: The Force of Gravitational Attraction between the Earth and the Moon Please support me on Patreon! Thank you to Aarti Sangwan and Christopher Becke for being my Quality Control Team for this video. Thank you to Youssef Nasr for transcribing the English subtitles of this video. Deriving the Acceleration due to Gravity on any Planet and specifically Mt. Everest

Name: The Force of Gravitational Attraction between the Earth and the Moon Category: Circular Motion & Gravity Date Added: 20171203 Submitter: Flipping Physics According to NASA, the mass of the Earth is 5.97 x 10^24 kg, the mass of the Moon is 7.3 x 10^22 kg, and the mean distance between the Earth and the Moon is 3.84 x 10^8 m. What is the force of gravitational attraction between the Earth and the Moon? Want Lecture Notes? This is an AP Physics 1 topic. Content Times: 0:07 Translating the problem 0:56 Solving the problem 2:15 Determining how long until the Moon crashes into the Earth 4:00 Determining what is wrong with this calculation Next Video: Deriving the Acceleration due to Gravity on any Planet and specifically Mt. Everest Multilingual? Please help translate Flipping Physics videos! Previous Video: How Much is a Mermaid Attracted to a Doughnut? Please support me on Patreon! Thank you to Aarti Sangwan and Christopher Becke for being my Quality Control Team for this video. Thank you to Youssef Nasr for transcribing the English subtitles of this video. The Force of Gravitational Attraction between the Earth and the Moon

Name: How Much is a Mermaid Attracted to a Doughnut? Category: Circular Motion & Gravity Date Added: 20171127 Submitter: Flipping Physics How Much is a Mermaid Attracted to a Doughnut? A practical, everyday example of Newton’s Universal Law of Gravitation. Want Lecture Notes? This is an AP Physics 1 topic. Content Times: 0:08 Translating the problem 0:42 The Force of Gravity Equation 1:47 Solving the problem 2:24 How to do “times ten to the” on your calculator 2:45 Correcting our mistake 3:42 Visualizing these forces 4:14 Why do the objects not move? 5:36 What if the mermaid and donut were the only two objects in the universe? Next Video: The Force of Gravitational Attraction between the Earth and the Moon Multilingual? Please help translate Flipping Physics videos! Previous Video: Newton's Universal Law of Gravitation Introduction (The Big G Equation) Please support me on Patreon! Thank you to Eric York, Scott Carter, Jonathan Everett, and Christopher Becke for being my Quality Control Team for this video. Thank you to Youssef Nasr for transcribing the English subtitles of this video. How Much is a Mermaid Attracted to a Doughnut?

Name: Newton's Universal Law of Gravitation Introduction (The Big G Equation) Category: Circular Motion & Gravity Date Added: 20171120 Submitter: Flipping Physics Understanding Newton’s Universal Law of Gravitation. Including a dramatization of The Cavendish Experiment and force visualization via qualitative examples. Want Lecture Notes? This is an AP Physics 1 topic. Content Times: 0:11 Reviewing the standard Force of Gravity or Weight equation 0:56 Newton’s Universal Law of Gravitation 1:48 Defining r 2:47 The Cavendish Experiment 3:52 Visualizing qualitative examples 5:59 When to use the two Force of Gravity equations Next Video: How Much is a Mermaid Attracted to a Doughnut? Thank you to Bronson Hoover of dnbstudios for letting me use his original composition Bèke as Henry Cavendish’s background music. Multilingual? Please help translate Flipping Physics videos! Previous Video: Conical Pendulum Demonstration and Problem Please support me on Patreon! Thank you to Scott Carter, Jonathan Everett, and Christopher Becke for being my Quality Control Team for this video. Newton's Universal Law of Gravitation Introduction (The Big G Equation)

 universal gravitation
 gravitation
 (and 8 more)

Name: Conical Pendulum Demonstration and Problem Category: Rotational Motion Date Added: 20171112 Submitter: Flipping Physics A conical pendulum is demonstrated and it’s angular velocity is determined. Want Lecture Notes? This is an AP Physics 1 topic. Content Times: 0:08 Translating the problem 0:54 Illustrating how this is a conical pendulum 1:25 Drawing the free body diagram 2:50 Breaking the force of tension into its components 3:53 Summing the forces in the ydirection 4:34 Summing the forces in the indirection 5:25 Solving for the radius 7:23 Determining the angular direction 8:02 Comparing our answer to the demonstration 8:51 The Physics Works! Next Video: Newton's Universal Law of Gravitation Introduction (The Big G Equation) Multilingual? Please help translate Flipping Physics videos! Previous Video: The Right Hand Rule for Angular Velocity and Angular Displacement Please support me on Patreon! Thank you to Scott Carter and Christopher Becke for being my Quality Control Team for this video. Conical Pendulum Demonstration and Problem

 angular velocity
 right hand rule
 (and 4 more)

Name: The Right Hand Rule for Angular Velocity and Angular Displacement Category: Rotational Motion Date Added: 20171106 Submitter: Flipping Physics The angular right hand rule is defined and repeatedly demonstrated. Want Lecture Notes? This is an AP Physics 1 topic. Content Times: 0:12 Prepping for the Right Hand Rule 1:27 1st example 2:27 2nd example 3:01 Why we don’t use clockwise and counterclockwise 4:09 3rd example 4:35 4th example 4:56 5th example 5:12 6th example 5:38 Clarifying the direction Next Video: Conical Pendulum Demonstration and Problem Multilingual? Please help translate Flipping Physics videos! Previous Video: Minimum Speed for Water in a Bucket Revolving in a Vertical Circle Please support me on Patreon! Thank you to Scott Carter, Aarti Sangwan, and Christopher Becke for being my Quality Control Team for this video. The Right Hand Rule for Angular Velocity and Angular Displacement

 counterclockwise
 clockwise
 (and 4 more)
Terms of Use
The pages of APlusPhysics.com, Physics in Action podcasts, and other online media at this site are made available as a service to physics students, instructors, and others. Their use is encouraged and is free of charge. Teachers who wish to use materials either in a classroom demonstration format or as part of an interactive activity/lesson are granted permission (and encouraged) to do so. Linking to information on this site is allowed and encouraged, but content from APlusPhysics may not be made available elsewhere on the Internet without the author's written permission.
Copyright Notice
APlusPhysics.com, Silly Beagle Productions and Physics In Action materials are copyright protected and the author restricts their use to online usage through a live internet connection. Any downloading of files to other storage devices (hard drives, web servers, school servers, CDs, etc.) with the exception of Physics In Action podcast episodes is prohibited. The use of images, text and animations in other projects (including nonprofit endeavors) is also prohibited. Requests for permission to use such material on other projects may be submitted in writing to info@aplusphysics.com. Licensing of the content of APlusPhysics.com for other uses may be considered in the future.