# zlessard

Members

39

1

## Blog Entries posted by zlessard

Like many CYO ballers such as myself, one of the most surprisingly challenging parts about the game of basketball is shooting foul shots. It seems so simple when you see a professional do it: they spin the ball around a couple times, throw it up and it goes through the net. But looking at the physics of the elusive foul shot can possibly help explain why this task can prove to be so difficult for many.
For starters, a foul shot is a shot taken standing still 15 feet from the basket. The objective is to take an uncontested shot and put the 9.5" diameter basketball through an 18" diameter hoop. This obviously makes it challenging because these sizes don't leave much room for error. A major factor in the likeliness of a foul shot to go through the hoop is the launch angle of the shot. The ideal launch angle for an average sized player is about 45 degrees. For shorter players, a steeper angle will be required and the opposite for taller players. The problem for many players is that their launch angle on foul shots is too low. If your launch angle deviates 15 degrees or more lower than the ideal launch angle, then your shot will almost certainly hit the back of the rim. This does not mean it won't go in, but the likeliness of it going through is far lower than someone that launches the ball at the ideal angle. Another important factor impacting whether or not you will find success at the charity stripe is the spin put on the ball. A ball with a lot of backspin on it will decrease greatly in velocity once it makes contact with the rim due to the frictional force of contact, making it more likely for the ball to fall through the hoop rather than ricochet off.
Hopefully this new found knowledge will translate to your performance at the line. If not, work on perfecting that launch angle and maybe things will turn around for you.
Something that I am definitely interested in doing in my life is going skydiving. Like many other amateur skydiving enthusiasts, I assume that the best way to start my expedition from 10,000 feet would be to understand the physics behind the fall.
Every great skydiving adventure starts with a voluntary jump into the sky. Once having jumped, a skydiver accelerates downwards until they reach terminal velocity, where the force of air resistance prevents the force of gravity from accelerating the subject any further. A subject falling in a spread eagle position will reach terminal velocity faster than someone falling head or feet first. At a certain point, the falling person must open their parachute in order to decelerate themselves in their descent. A parachute works to decelerate a falling human because it increases the cross-sectional area of the falling person, which in turn leads to an increase in air resistance, which should slow the parachute utilizer to a speed that allows them to make contact with the ground with a force that does not break every bone in their body. This device allows for people everywhere to enjoy the sensation of falling to their death without actually falling to their death. Unless of course your parachute fails to open and you have no back up. In that case you should try to land on your feet and hope the damage is small.

There are hundreds of ways to sustain an injury like a concussion. (getting hit by an object, falling on the floor, falling off of a tube, etc.) It may be strange to think about, but a concussion is truly caused by a basic physics concept: the law of inertia. Take the example of falling on the floor. When a head makes contact with the floor, the skull will obviously stop traveling in the direction of the floor. The brain, however, will continue moving until acted on by an outside force because it did not make direct contact with the floor. This causes the brain to keep moving until it makes contact with the skull, which causes the concussive energy to flow throughout the brain and ultimately lead to a concussion. So next time you fall off of a tube connected to the back of a speed boat and smack your head against the water at such a force that gives you a concussion, you can blame your misfortune on the fact that your brain is made up of matter and therefore influenced by the law of inertia.
For anyone that has watched or played baseball, hitting a homerun has to be one of the most exciting plays that can happen. Looking at this play deeper, the physics of hitting a baseball over a fence is very fascinating. One of the things that makes this play so difficult for major league hitters is how quickly the ball is traveling, and how small the area of the bat you have to hit the ball with is in order to make it travel so far. The "sweet spot" on a bat where you will likely have to contact the ball is very small, around 4-6 inches long on the bat. Hitting the ball in this spot will minimize vibrations of the bat and possibly maximize the transfer of energy between the bat and the ball. For a baseball traveling in excess of 90 miles per hour towards the batter, contacting the ball with the sweet spot of a 32-inch bat can allow the ball to leave the bat at speeds exceeding 110 miles per hour, which can cause the ball to travel as far as 475 feet, not accounting for wind and various other factors acting on the ball in flight.
Major League Baseball has begun to realize how fascinating the physics of the sport can be for fans, and has recently started to track many more of the physical measurements that occur during a baseball game, on top of just pitch speed. The league now broadcasts the distance the ball travels, the speed it travels initially after contact, and the apex height of the ball in its flight. They've also started to measure the speed that fielders and base runners run with, and the efficiency of the route that they take to the ball. All of these measurements add to the intrigue of the sport, even for people who do not understand anything about physics. This revelation in baseball shows how fascinating the physics of sports can be, for any sport.
Like everyone else, this is my first blog post for Physics C. Outside of school, I really enjoy to golf, play CYO basketball, be around my friends or attend sporting events. I love to watch baseball and football, and that's how I spend all of my time that isn't taken up by calc, physics and econ. My biggest strength in school is that I generally understand things pretty quickly, but I could definitely benefit from an improved work ethic. In the future, I plan on attending college like most other kids in my position, but I really have no idea what I want to do once i get there. I am taking AP Physics C because, as I said, I really have no idea what I want to do in the future, so I figured the best way to set myself up for the future was to take the most challenging classes possible. What I do know about my future is that I want to be as successful as possible, and really intend on selecting a major that will best set me up for this. You're always told to major in something that you are passionate about, but I don't think many colleges offer a major in the arts of watching the New York Mets. Through this class, I hope to gain a better work ethic and improve on working in a setting like this where you have to learn a lot of things more independently. I also hope to understand Physics to a greater extent than I do now, because I feel like this topic could definitely be an important one for me going forward. The thing I am most excited for this year is the day I finish my final AP exam, because once that day comes I will have survived senior year. I am very anxious for the decisions I will have to make about my future over the course of this year, especially regarding college. Just saying the word college is enough to make me anxious. I am definitely excited to see what's in store for me in this course, and I look forward to writing many, many more blogs.
×
×
• Create New...