# jcstack6

Members

69

1

neato.
2. ## Partial Derivatives

School's been treating me well it's definitely been a lot more work than high school, but manageable and enjoyable.
3. ## Partial Derivatives

A partial derivative uses this nice formula. (f)/(x), where f:R^2->R is lim h->0 (f(x+h,y)-f(x,y))/h. Physics is everywhere, waiting, watching.
4. ## Pre-flight briefing

Launch Report and Debrief Launch Time: 10:32 Team Members Present: Jason Stack, Marcus NIcholas, Michael Kennedy Play-by-Play: We've lifted off and are headed directly up in an attempt to obtain orbit around Kerbin. We then angle our ship slightly to the east to increase the eccentricity of our orbit. We reached 70,000 meters and now a maneuver is being created to obtain orbit around Kerbin. Our first engine has been decoupled. Orbit has been obtained around Kerbin. We have waited a long time to obtain the proper angular distance from Duna. Now a maneuver is being used to
5. ## Pre-flight briefing

Pre-Launch Design Release Team Name: Nicholas Enterprises Available Funds: \$475,278 Vehicle Name: Mr. Rocket Vehicle Parts List and Cost: Twin boar x2, MK3 Fuselodge x1, Rhino Engine x1, AVT-1 Winglet x1, Rockomax Decoupler x1, Airstream Protective Shell x1, TR-18 Stack Decoupler x2, Terrier Fuel Engine x1, F1-T 400 Tank, RC 0015 RGU x1, MK-1 Command Pod x1, SPL solar panel x2, MK16 Parachute x1, LT-1 Landing Struts x3, MK-7 Nose Cones x2, Launch Stability Enhancers x2, and Radial Decouplers x2. Total cost = \$82,090 Design Goals: Our vehicle is designed
6. ## Pre-flight briefing

Launch Report and Debrief Launch Time: 10:43 Team Members Present: Mike Kennedy, Marcus Nicholas, Jason Stack Play-by-Play: We've lifted off and are headed directly up in an attempt to obtain orbit around Kerbin. We then angle our ship slightly to the east to increase the eccentricity of our orbit. We reached 70,000 meters and now a maneuver is being created to obtain orbit around Kerbin. Our first engine has been decoupled. Orbit has been obtained around Kerbin. Now a maneuver is being used to create an encounter with an orbit around Minmus. An encounter has been created with an
7. ## Pre-flight briefing

Pre-Flight Briefing Team Name: Nicholas Enterprises Available Funds: \$257,818 Vehicle Name: Mr. Rocket Vehicle Parts List and Cost: Twin boar x2, MK3 Fuselodge x1, Rhino Engine x1, AVT-1 Winglet x1, Rockomax Decoupler x1, Airstream Protective Shell x1, TR-18 Stack Decoupler x2, Terrier Fuel Engine x1, F1-T 400 Tank, RC 0015 RGU x1, MK-1 Command Pod x1, SPL solar panel x2, MK16 Parachute x1, LT-1 Landing Struts x3, MK-7 Nose Cones x2, Launch Stability Enhancers x2, and Radial Decouplers x2. Total cost = \$82,090 Design Goals: Our vehicle is designed to reach orbit aroun
8. ## Pre-flight briefing

Nicholas Enterprises Starting Funds: \$60,000 Vehicle Name: Mr. Rocket Vehicle Parts and Cost: MK16 Parachute X1, LV-909 Liquid Fuel Engine X1, FL-T800 Fuel Tank X1, TT-38K Radial Decoupler X3, RT-10 Hammer Fuel Booster X3, MK1 Command Pod X1, AV-T1 Winglet X3, TR-188 Stack Decoupler X2, Aerodynamic Nose Cone X3, FL-T400 X1, LV- T45 Engine X1. Total Cost- \$12,182 Ending Funds- \$47,818 Design Goals: Our rocket has been designed to successfully go into orbit around Kerbin and then ret
9. ## Launch Report and Debrief

Launch Time: 10:37 am Team Members Present: Jason Stack, Marcus Nicholas and Michael Kennedy were all present for this launch. Play-by-Play: Initially the rocket was created using the parts listed in the pre-flight briefing. The rocket was launched from Kerbin and angled in order to successfully travel outside of Kerbin's atmosphere. The rocket was then directed into orbit around Kerbin. Kerbin was orbited a few times. The rocket was then returned back to Kerbin by using a maneuver that brought the rocket back into Kerbin's atmosphere. The bottom engines were released, then the second
10. ## Pre-flight Briefing

Nicholas Enterprises Starting Funds: \$60,000 Vehicle Name: Mr. Rocket Vehicle Parts and Cost: MK16 Parachute X1, LV-909 Liquid Fuel Engine X1, FL-T800 Fuel Tank X1, TT-38K Radial Decoupler X3, RT-10 Hammer Fuel Booster X3, MK1 Command Pod X1, AV-T1 Winglet X3, TR-188 Stack Decoupler X2, Aerodynamic Nose Cone X3, FL-T400 X1, LV- T45 Engine X1. Total Cost- \$12,182 Ending Funds- \$47,818 Design Goals: Our rocket has been designed to successfully go into orbit around Kerbin and then return safely back to Kerbin. Launch Goal: Our goa
11. ## Mass CAN Change?

In high school physics we've always been told that test will try to trick you. They'll ask if a 10kg person goes from the earth to the moon how will their mass change. And the answer is always it doesn't. Mass doesn't change, mass doesn't change, mass doesn't change. It's been hammered into our brains. But it's a lie. So the speed of light in a vacuum is 300,000 km/s. This is the fastest speed any object in the universe can travel at. So what happens if you try to accelerate an object going the speed of light? Well picture this: a rocket accelerate to the speed of light, but the thrusters are
12. ## Double Dominos

That looks super interesting!
13. ## PolyMagnets

That's super cool man!
14. ## Credit Cards

That sure is neat!

Black holes are often thought of as dark holes sucking matter in towards them by there massive amount of gravitational force. Interestingly enough, however, black holes are anything but black. Black holes might be dark, but they glow. It is well known that black holes decay until they don't have enough energy to sustain their mass, thereby not allowing them to exist any longer. But what does this loss of energy turn into? The slight glow in black holes. This slight glow is due to "Hawking Radiation". It is the slight decay of energy into radiation from black holes over the time of their existe
16. ## Yo-Yos

Yeah yo-yos are the coolest.
17. ## The boost caboose

That sounds super interesting.
18. ## Northern Lights

That's so interesting and remarkable that a magnetic field could trap particles emitting light.

The speed of light is known as 300,000 km/s and we leave it at that. But this speed is only the speed of light through a vacuum and light doesn't always travel in a vacuum. The slowest recorded speed of light is actually 17 m/s, a speed easily attainable by a car. So what happens then if particles can travel faster than light? Well in many nuclear reactors, this is what happens. Particles travel at a speed greater than the speed of light in that specific atmosphere. When this happens an emission of blue light emerges. This is called Cherenkov Radiation and it can be compared to a sonic boom, w
20. ## An Observer Can Change Everything

Recently in our physics class we were discussing the theory of relativity and how it works in nature. Without learning the math behind the theory yet, the theory is incredibly confusing, but it reminded me of a video we watched last year in my physics class that discussed how observers can change the way particles act. In a certain experiment, physicists shot electrons through a small slit to see the nature of an electron, whether it would act as a wave or as a particle. Incredibly, even though an electron is a particle, when the experiment was first run, it acted as a wave and diffraction occ
21. ## The World's First Quad Cork 1800

That's crazy!
22. ## Week 2

Good job Jeremy.
23. ## Slipping in the Rain

I was recently driving on a day when it was raining fairly aggressively. I was driving fine when all of a sudden a car headed the opposite direction from me slid right in front of me almost hitting my car. After assessing the accident and making sure everyone was okay I began to think about what made the car slide all the way to the opposite side of the road. As the pavement was wet, the coefficient of friction between the car and the road was decreased. This made it so the traction in his tires didn't help him with turning. He was beginning to slide to his right side, and tried to compensate
24. ## Breaking Your Phone with Physics

Most people today have iPhone's that have an immensely complex system of wires in them to allow them to function properly. They are filled with wires, small batteries and capacitors to allow for the story of data and basic functions on your phone. But this complex system presents a problem when faced with a magnet. If a magnet is brought closer to a phone it will cause a changing magnetic field around the phone's wires. The change in the magnetic field will cause current to move in the direction opposing the change in the magnetic field. But doesn't the complexity of iPhone's help prevent thi
25. ## Popping Popcorn

Now I know the physics behind the best movie snack.
×
×
• Create New...