Jump to content

ThePeculiarParticle

Members
  • Posts

    58
  • Joined

  • Last visited

  • Days Won

    3

Blog Entries posted by ThePeculiarParticle

  1. ThePeculiarParticle
    On October 15th 1991, an event which challenged our scientific understanding of our universe occurred.

     
    The particle that was registered is now referred to as the “Oh My God Particle” after the statement blurted out upon detecting it. Under the night sky of Utah’s Cosmic Ray Detector, a particle was recorded going 99.99999999999999999999951% the speed of light. To put that in perspective, that is faster than even the highest recorded speed of a proton recorded in the Large Hadron Collider, which was 99.999999% the speed of light. It takes increasingly more energy to speed up a particle as it approaches the speed of light, making this difference quite significant. This means if we raced the OMG particle against a particle with plank energy ( 0.00000000000000000000049% speed of light), it would take 2.59×1010 the age of the universe for the particle with plank energy to gain 1 cm on the OMG particle.
     
    So how do particles naturally accelerate to these speeds in space? Well that's the question many scientists today are asking. Physicist in Argentina, in the Pierre Auger Observatory, believed they were on the right track when they saw that these types of particles emitted from the hearts of certain galaxies, but over time the data showed this assertion did not hold water.
     
    As of 2014, in the same state where the first  particle was recorded, scientists working the Telescope Array, made up of 500 particle detectors found that  these particles seemed to emanate from one portion of our night sky. This indicated a source much closer than previously thought. As of recently, no further findings have been published. Yet another space mystery we may have a chance of solving in my lifetime, but in the meantime we will just have to look up at the skies and wonder.
     
    As always thanks for reading! - ThePeculiarParticle
  2. ThePeculiarParticle
    It is a known fact that the United States is lagging behind in the area of infrastructure. The true problem with this question is how far forward should we upgrade in a world where other countries have passenger bullet trains. A solution to this may come from of a new era of transportation technology referred to as Hyperloops.
     
    The open sourced design was released by a joint team working with SpaceX and Tesla to be modified by the public and worked into a functioning design. The overall concept of this type of transportation surrounds the idea of a large car which travels through a system of tubing located above or below ground. Many designs from here differ with the car being levitated on electromagnets/air, traveling through a vacuum tube system, or being propelled by a fan system. Many companies have stepped in unveiling their prototypes for this system of travel, most recently the company Virgin, who claims their design would reach speeds of 760 miles per hour. To put that in perspective, if a straight track was put between Rochester and New York City, the travel time would only be around 32 minutes. It's a very large claim for a large company who wishes to see a final working route by 2021.
     
    Here is a travel calculator if you wish have a little fun.
     

    https://hyperloop-one.com/route-estimator/rochester-us/new-york-city-us/travel-times
    Am I skeptical? Yes.
    How will a vacuum seal be maintained over hundreds of miles?
    How will passengers be slowed gradually in the event of an emergency?
    How well can people be protected in a hunk of metal moving over 700 miles per hour?
    If there is something like a fire, how would people escape their car if they are surrounded by miles of vacuum tubes?
     
    Then again, around one hundred years ago, people would have had the same questions regarding the thousands of hunks of metal which carry thousands of people through our skies every day. Only the future will truly know what is in store for the technology of transportation.
  3. ThePeculiarParticle
    The objective of the lab TheNightKing and I performed this week was to create a functioning top with the given materials of a pencil, 2 paper plates, 6 pennies, and tape. In relation to the engineering design process this would be the problem or objective we need to focus our ideas around.
    Our next step would be research, but , due to our lack of time, we pulled from our knowledge gained throughout this past unit and our previous year physics. One of the main principles to keep a top up is angular momentum. The equation for spinning angular momentum is rotational inertia x angular velocity. So we need to spin it as fast as possible and, most importantly, we need to give it the largest quantity of rotational inertia possible. So, ignoring the pencil rod at the moment and plates, we knew we needed to get the pennies as far away from the center as possible since the equation of a mass away from the axis of rotation for a given mass is mr^2.  So, by increasing the radius, we could get a larger quantity of spinning angular momentum.
    Stating and listing the requirements would be the next step in the engineering process, but we were already given them in the objective.
    The next step is to brainstorm, evaluate, and choose solution. We chose to use the pencil as our main post and then centered and poked it through the two plates. We then taped the pennies to the outskirts of the plate as this would put their mass at the farthest points away from the center of mass as possible.
    Our prototype was created and now we began testing. The top originally wobbled so much that it wouldn’t spin so we adjusted the pennies. We Adjusted until we had the top balanced which decreased the wobble dramatically.  That being said, it was not as stable as we ideally would like. This is when FizziksGuy gave us a nudge in the right direction by asking which part was the most unstable. We both noticed that it was the very top of the pencil. In our efforts to make the top more stable, we broke the pencil to a fourth of the size and therefore dramatically lowering the center of mass. Now the top was much more stable as the distance of the center of mass from the ground is substantially less than before.  
    After all this testing, we felt our top was substantially more stable and adequately addressed the problem, being able to spin for longer than 30 seconds at a time. The last step in the engineering design process is communicating our results which coincidentally are all explained above. Engineers are used not only to create solutions, but to improve on the efficiency of current ones, so to this effect, had we had a longer time frame I am sure the results could have been even better.
    As always thanks for reading! - ThePeculiarParticle
  4. ThePeculiarParticle
    So, as a recap for mid year, I wanted to talk about two types of physics related media . These two  sources have inspired ideas for blog posts, and are things I listen or watch for enjoyment. So without further adieu, here they are:
     
    1. Twenty Thousand Hertz - What is it? Well, it is a podcast about sound. Wait don’t leave just yet... It is a lot better than it sounds, I swear. This labor of love connects the sounds we hear everyday to physics, psychology, ecology, and even history. The topics range, with subjects that could interest most listeners, and I cannot recommend this series enough. If you take anything away from this post, it would be give one a try. One of my favorites is simply titled “Space”, where sound is described interacting with different environments, including what a person’s voice would sound like on different planets. Whatever your taste is there is, an episode for it.
    https://www.20k.org/archive
    2. The next channel is more for those interested in engineering. It is not as widely known as some other favorites such as VSauce or Mark Rober (both of which I cannot recommend enough), but that's because it is a specific niche. If you are more curious in the engineering designs which have shaped current society and how they work alongside physics, then this is the place to be. Whether you are sure of a future in engineering or only dabble, then this is a good place to find out if something like this is a path which interests you.
    https://www.youtube.com/channel/UCR1IuLEqb6UEA_zQ81kwXfg/videos
     
    As always thanks for reading! - ThePeculiarParticle
  5. ThePeculiarParticle
    1.
    A.) There are several misconceptions about studying that can hurt you in the long run which include:
    Learning is fast
    Knowledge is composed of isolated facts
    Being good is a born talent
    I can multitask
    B.) The misconception which resonates with me the most is that “knowledge is composed of isolated facts”. It seems that many teachers, when focusing on studying, believe that vocabulary is the best way to digest information. Personally, I have always had trouble studying in this way. Now, knowing that mapping out information is the way to go, I feel like my study habits are already better prepared than I once thought for this year.
    C.) Many students need to develop a new sense of metacognition once they arrive at college. This is the perceived sense of awareness on a certain topic. Many students when taking their first exam, go in overconfident not realizing that they have not prepared well enough to pass the exam. Only through good study skills, along with trial and error can a person develop an accurate sense of metacognition.
     
    2.
    A.) Many students have misconceptions on what factor plays the biggest role in successful learning. The truth is that what you think about when studying is most important. The less distractions a person has, the more focused a studying experience they can have by using methods of deep processing.
    B.) Deep processing is going beyond simply trying to store the information given to you, as it is unlikely your brain will retain it. It is expected that deeper connections are made with the material which include: creating an emotional connection, organizing and visualizing how information goes together, or asking yourself questions how a teacher would. Deep processing is much more about comprehending the whole subject matter rather than being able to pull out tiny bits of information. This will be much more valuable on a test, and even in the long run, when future topics build off the same information.
    C.)
    1.Minimizing Distractions - With more distractions more time is spent not studying and not absorbing the information.
    2.)Developing accurate metacognition- It is important, as a student, to know one's limits and when they can push themselves further in order show they have mastered the work.
    3.)Deep, appropriate processing of critical concepts - Using deep thought and connecting all information can be quite difficult but it is one of the only ways to learn a topic thoroughly.
    4. Practicing retrieval and application - This acts as a simulated testing situation forpeople as they need to be able to recite and connect information in a coherent and quick manner.

     
    3.
    A.) Optimising learning is the number one way to prepare yourself for any exam or future instances where you need to need to look back upon learned information. The first strategy is elaboration, such as, how do concepts relate to other concepts. An example would be relating derivatives to finding instantaneous forms of motion on a graph, as it spans the gap between physics and calculus and provides real world applications. The next aspect is distinctiveness. For this unit alone, recognizing that average velocity is different than instantaneous velocity can mean the difference of understanding a problem or getting the incorrect answer. Another aspect is making information personal. I believe many of the problems in class already achieve this by focusing on topics which center around comedic scenarios or people’s interests. The blog posts will be our personal time to relate physics to what we are passionate about. The fourth aspect is practicing appropriate retrieval and application. I feel the best way to do this is by helping others as you need to know the information to teach it and it truly makes a person verbalize the varying concepts in their head. The second to last aspect is Automaticity, which usually lends itself to practicing an excessive amount of problems on the subject. If you can look at a problem, and have done so many practice problems where you know how to start it and then work through it without truly struggling, you have achieved this level of mastery. The final aspect is overlearning. To do this one must study the information to the point it can be recalled quickly and easily. I believe the best way to do this, for me, is to sit down with someone else and try having a conversation/interview about the topic to the point where it seems natural. At this point, a person should be able to tackle the comprehensive questions which are given to them.
     
    4.
    A.)  What is metacognition? Metacognition is the ability to tell how well you have mastered a material.
    In the video, how did the teacher test for metacognition? Prof. Chew asks his students what they predict they shall score on their first test. He then compares it to their actual scores. The estimated percent is a x coordinate with the actual being the y coordinate. A line with a slope of 1 was created and anyone who scored lower than the line shows a sense of overconfidence and lack of metacognition.
    How does poor metacognition hurt academic success? Poor metacognition can fool a person into feeling they are ready for a test when they are not causing them to fail.
    Why would metacognition that was good in high school be bad in college? In high school the curriculum focuses more on shallow learning and memorizing small facts while college focuses on deep learning over prolonged periods of time.  
    What are the critical differences between deep and shallow processing? Deep processing centers much more around why and how things work and connect. Shallow processing is more simply reciting information.
    Name a task you already do where you automatically use deep processing.  When I play volleyball I use deep processing especially when analyzing a hitter that I am supposed to be blocking. How is he an asset to the team? What are his strengths? What are his weaknesses? How does he plan to perform this play and how can I react to his move in the best possible way? All of these questions bounce around in nearly an instant between play.
     
    B.) Just as in a real world lecture, writing down everything the video tells you is a bad idea and will leave the important notes lost in a sea of less usefull information. Notes should paraphrase and summarize in order to be a useful tool. Video lectures are nice as they are already recorded so any information missed can be gone back to if not fully understood or needed to be explored further. While it is much harder to miss a video lecture than an in class lecture, taking the notes and copying them from someone else is a horrible idea, as you are using second hand information as your first hand. The best source to get it from is the lecture itself and, most importantly, a person can have faith that they are not writing down any misinformation.The tip for organizing notes is necessary for both, as notes are not a one time source of information. When a person inevitably looks back on them, they want to be able to quickly access the topic and information they are looking for amidst all the others.
    C.) A study group is very valuable in this class. I already have a small one forming and, so far, it has worked out tremendously with each member contributing to different problems which the others were stuck on. The best method of learning is through teaching others and, when that can happen equally amongst people in a group setting, then it is a beneficial relationship for all parties involved.
     
    5.
    A.)There are appropriate ways to handle an exam which can aid you in future exams, but there are other habits which shall certainly hurt you. Some behaviors to avoid while preparing are: studying the same as you did for prior exams, waiting to ask for help, skipping class to catch up on others, cramming, falling behind, and skipping assignments. The main things to avoid directly after you do poorly on an exam are panicking and going into denial. A person should look at this moment and take it as the learning experience that it is and take the steps necessary to do better in the future.
    B.) If you do end up failing, there are some strategies which help greatly. The strategies recommended are: to honestly examine how you prepared, review the exam, compare it with your notes, talk with your professor, examine your study habits and develop a plan for your future.
    C.) A few helpful strategies can guarantee a good grade for the future. These steps include: committing an appropriate amount of time and effort to your work, minimizing any distractions you experience, attending class, setting realistic study goals, not letting work slide, as it will only build up, and not giving away easy points (not following simple instructions). With these tips grades can improve along with your outlook on failure not being an obstacle but a learning point.  
  6. ThePeculiarParticle
    Based on a variety of evidence, the last time the Earth's magnetic poles flipped was 750,000 years ago. Going off of this, many sources say we could face another flip at any point. Now, before you panic and begin blasting REM out of the nearest speakers, I just wanted to fill you in on what the process looks like.
    The process is much longer than most people think when first visualizing it. It is actually a process which is estimated to take 1000-10000 years. To explain why, the main factor behind the Earth's magnetic field is believed to be the liquid iron part of the Earth's core. The alignment of iron and it's flow creates a magnetic field surrounding the Earth. As the iron won't all realign in a matter of days in the transition period, Earth's field appears to grow weaker as orientations move, then multiple different poles may form, until eventually the poles are reoriented and effectively flipped. Will this cause confusion for many electrical systems, animals, and humans? Yes. One of the biggest dangers, however, is the lack of a strong magnetic field protecting Earth from harmful solar flares, which could wipe out modern electrical systems as a whole. This is a very real fear, with a severe storm occurring in 1859 known as the Carrington Event. This storm, even with a fully functioning magnetic field, managed to destroy large amounts of telegraph communications and caused auroras so strong they were seen in the Caribbean. While strong storms like this are rare, weak ones are fairly frequent. So, if the poles were to weaken, even the effects of a weak storm would be very destructive. Humanity would certainly not be the same after a direct hit.
    Anyways, don’t panic, much of this is out of anyone's control anyways, besides, even with this threat looming over our heads, we continue to make scientific progress without hesitation, and, like any other hardship, we keep our heads up and move forward. So, to sum it up, the poles won't just flip one morning and be switched the next, it is a process which takes numerous lifetimes.
     
    As always thanks for reading! - ThePeculiarParticle
×
×
  • Create New...