Search the Community
Showing results for tags 'Example'.

Name: Introductory Tangential Velocity Problem  Mints on a Turntable Category: Rotational Motion Date Added: 20170808 Submitter: Flipping Physics Three mints are sitting 3.0 cm, 8.0 cm, and 13.0 cm from the center of a record player that is spinning at 45 revolutions per minute. What are the tangential velocities of each mint? Want Lecture Notes? This is an AP Physics 1 topic. Content Times: 0:08 Translating the problem 1:11 Solving the problem 2:12 Visualizing the tangential velocities 2:42 The direction of tangential velocity Multilingual? Please help translate F

Humans are best for demonstrating Tangential Velocity and understanding that it is not the same as angular velocity. Want Lecture Notes? This is an AP Physics 1 topic. Content Times: 0:10 Beginning the demonstration 1:19 Adding the last human 1:50 What was different for each human? 2:44 Visualizing tangential velocity using an aerial view Multilingual? Please help translate Flipping Physics videos! Next Video: Introductory Tangential Velocity Problem  Mints on a Turntable Previous Video: Introductory Uniformly Angularly Accelerated Motion Problem  A CD Player

 example
 demonstration
 (and 6 more)

Name: Human Tangential Velocity Demonstration Category: Rotational Motion Date Added: 20170730 Submitter: Flipping Physics Humans are best for demonstrating Tangential Velocity and understanding that it is not the same as angular velocity. Want Lecture Notes? This is an AP Physics 1 topic. Content Times: 0:10 Beginning the demonstration 1:19 Adding the last human 1:50 What was different for each human? 2:44 Visualizing tangential velocity using an aerial view Multilingual? Please help translate Flipping Physics videos! Next Video: Introductory Tangential Velocity

 example
 demonstration
 (and 6 more)

Using Uniformly Accelerated Motion (UAM) as a framework to learn about Uniformly Angularly Accelerated Motion (UαM). Just like UAM, UαM has 5 variables, 4 equations and if you know 3 of the UαM variables, you can determine the other 2 UαM variables, which leaves you with 1 … Want Lecture Notes? This is an AP Physics 1 topic. Content Times: 0:15 Introducing Uniformly Angularly Accelerated Motion! (UαM) 0:38 Reviewing Uniformly Accelerated Motion 1:22 When can we use the UαM Equations? 2:24 The four UαM Equations 4:20 Examples of objects in UαM 4:48 Average and instantaneou

 variable
 demonstration
 (and 5 more)

Name: Uniformly Angularly Accelerated Motion Introduction Category: Rotational Motion Date Added: 20170717 Submitter: Flipping Physics Using Uniformly Accelerated Motion (UAM) as a framework to learn about Uniformly Angularly Accelerated Motion (UαM). Just like UAM, UαM has 5 variables, 4 equations and if you know 3 of the UαM variables, you can determine the other 2 UαM variables, which leaves you with 1 … Want Lecture Notes? This is an AP Physics 1 topic. Content Times: 0:15 Introducing Uniformly Angularly Accelerated Motion! (UαM) 0:38 Reviewing Uniformly Accelerated Moti

 variable
 demonstration
 (and 5 more)

A record player is plugged in, uniformly accelerates to 45 revolutions per minute, and then is unplugged. The record player (a) takes 0.85 seconds to get up to speed, (b) spends 3.37 seconds at 45 rpms, and then (c) takes 2.32 seconds to slow down to a stop. What is the average angular acceleration of the record player during all three parts? Want Lecture Notes? This is an AP Physics 1 topic. Content Times: 0:08 Translating the problem 2:35 Solving part (a)  angular acceleration while speeding up 3:13 Solving part (b)  angular acceleration at a constant angular velocity 3:57 S

 average
 acceleration
 (and 11 more)

Name: Angular Accelerations of a Record Player Category: Rotational Motion Date Added: 20170711 Submitter: Flipping Physics A record player is plugged in, uniformly accelerates to 45 revolutions per minute, and then is unplugged. The record player (a) takes 0.85 seconds to get up to speed, (b) spends 3.37 seconds at 45 rpms, and then (c) takes 2.32 seconds to slow down to a stop. What is the average angular acceleration of the record player during all three parts? Want Lecture Notes? This is an AP Physics 1 topic. Content Times: 0:08 Translating the problem 2:35 Solving part (a

 average
 acceleration
 (and 11 more)

The wheel of a bike rotates exactly 3 times in 12.2 seconds. What is the average angular velocity of the wheel in (a) radians per second and (b) revolutions per minute? Want Lecture Notes? This is an AP Physics 1 topic. Content Times: 0:08 Translating the problem 1:32 Solving for the angular velocity in radians per second 2:22 Converting from radians per second to revolutions per minute 3:24 Three common mistakes made by students when doing this conversion. 4:37 Alternate and easier solution for part b Multilingual? Please help translate Flipping Physics videos! N

Name: Introductory Angular Velocity Problem  A Turning Bike Tire Category: Rotational Motion Date Added: 20170626 Submitter: Flipping Physics The wheel of a bike rotates exactly 3 times in 12.2 seconds. What is the average angular velocity of the wheel in (a) radians per second and (b) revolutions per minute? Want Lecture Notes? This is an AP Physics 1 topic. Content Times: 0:08 Translating the problem 1:32 Solving for the angular velocity in radians per second 2:22 Converting from radians per second to revolutions per minute 3:24 Three common mistakes made by students

How far does a piece of gum stuck to the outside of a 67 cm diameter wheel travel while the wheel rotates through 149°? A conversion from revolutions to degrees is performed. Want Lecture Notes? This is an AP Physics 1 topic. Content Times: 0:11 Reading, visualizing, and translating the problem 1:22 Solving the problem 1:51 Converting from revolutions to radians 3:09 Measuring our answer Multilingual? Please help translate Flipping Physics videos! Next Video: Angular Velocity Introduction Previous Video: Defining Pi for Physics Please support me on Patreon!

Name: Introductory Arc Length Problem  Gum on a Bike Tire Category: Rotational Motion Date Added: 20170612 Submitter: Flipping Physics How far does a piece of gum stuck to the outside of a 67 cm diameter wheel travel while the wheel rotates through 149°? A conversion from revolutions to degrees is performed. Want Lecture Notes? This is an AP Physics 1 topic. Content Times: 0:11 Reading, visualizing, and translating the problem 1:22 Solving the problem 1:51 Converting from revolutions to radians 3:09 Measuring our answer Multilingual? Please help translate Flipping Phy

Calculus based review of the cross product torque equation, how to do a unit vector cross product problem, rotational equilibrium, the rotational form of Newton’s second law, the angular momentum of a particle and of a rigid object with shape, the derivation of conservation of angular momentum, and a conservation of angular momentum example problem which reviews a lot of the pieces necessary to understand conservation of angular momentum. For the calculus based AP Physics C mechanics exam. Want Lecture Notes? Content Times: 0:15 The cross product torque equation 1:10 Unit vector cro

 derivation
 cross product
 (and 14 more)

Name: AP Physics C: Universal Gravitation Review (Mechanics) Category: Oscillations & Gravity Date Added: 20171222 Submitter: Flipping Physics Calculus based review of Universal Gravitation including Newton’s Universal Law of Gravitation, solving for the acceleration due to gravity in a constant gravitational field, universal gravitational potential energy, graphing universal gravitational potential energy between an object and the Earth, three example problems (binding energy, escape velocity and orbital energy), and Kepler’s three laws. For the calculus based AP Physics C mechanics

 universal gravitation
 newtons universal law of gravitation
 (and 21 more)

Name: AP Physics C: Rotational Dynamics Review  2 of 2 (Mechanics) Category: Rotational Motion Date Added: 20170428 Submitter: Flipping Physics Calculus based review of the cross product torque equation, how to do a unit vector cross product problem, rotational equilibrium, the rotational form of Newton’s second law, the angular momentum of a particle and of a rigid object with shape, the derivation of conservation of angular momentum, and a conservation of angular momentum example problem which reviews a lot of the pieces necessary to understand conservation of angular momentum. For t

 derivation
 cross product
 (and 14 more)

A racquetball is dropped on to three different substances from the same height above each: water, soil, and wood. Rank the _______ during the collision with each substance in order from least to most. (a) Impulse. (b) Average Force of Impact. (Assume the racquetball stops during the collision with the water and soil.) This is an AP Physics 1 Topic. Want Lecture Notes? Content Times: 0:11 Prom Dress Day! 0:20 The three demonstrations 0:32 The problem 1:43 The equation for Impulse and Impact Force 2:02 Understanding the two parts to the demonstrations 3:33 Part (a): Impulse

Name: Impulse Comparison of Three Different Demonstrations Category: Momentum and Collisions Date Added: 20170209 Submitter: Flipping Physics A racquetball is dropped on to three different substances from the same height above each: water, soil, and wood. Rank the _______ during the collision with each substance in order from least to most. (a) Impulse. (b) Average Force of Impact. (Assume the racquetball stops during the collision with the water and soil.) This is an AP Physics 1 Topic. Want Lecture Notes? Content Times: 0:11 Prom Dress Day! 0:20 The three demonstrations

Using Impulse to Calculate Initial Height
Flipping Physics posted a video in Momentum and Collisions
A 66 g beanbag is dropped and stops upon impact with the ground. If the impulse measured during the collision is 0.33 N·s, from what height above the ground was the beanbag dropped? This is an AP Physics 1 Topic. Want Lecture Notes? Content Times: 0:12 Superhero Day! 0:56 The problem 1:39 Splitting the problem in to two parts 2:32 Using Impulse for part 2 3:30 Using Conservation of Energy for part 1 4:45 What went wrong? Next Video: Impulse Comparison of Three Different Demonstrations Multilingual? Please help translate Flipping Physics videos! Previous Vid 
Name: Using Impulse to Calculate Initial Height Category: Momentum and Collisions Date Added: 20170203 Submitter: Flipping Physics A 66 g beanbag is dropped and stops upon impact with the ground. If the impulse measured during the collision is 0.33 N·s, from what height above the ground was the beanbag dropped? This is an AP Physics 1 Topic. Want Lecture Notes? Content Times: 0:12 Superhero Day! 0:56 The problem 1:39 Splitting the problem in to two parts 2:32 Using Impulse for part 2 3:30 Using Conservation of Energy for part 1 4:45 What went wrong? Next

A Toyota Prius is traveling at a constant velocity of 113 km/hr. If an average force of drag of 3.0 x 10^2 N acts on the car, what is the power developed by the engine in horsepower? Want Lecture Notes? This is an AP Physics 1 Topic. Content Times: 0:15 The problem 1:18 Which equation to use and why 2:20 Billy solves the problem 3:59 What if the car is moving at 129 km/hr? Next Video: You Can't Run From Momentum! (a momentum introduction) Multilingual? Please help translate Flipping Physics videos! Previous Video: Average Power Delivered by a Car Engine  Example

Rearranging Newton’s Second Law to derive the force of impact equation. Want lecture notes? This is an AP Physics 1 Topic. Content Times: 0:09 Newton’s Second Law 1:57 The Force of Impact equation 2:33 The paradigm shift Next Video: Calculating the Force of Impact when Stepping off a Wall Multilingual? Please help translate Flipping Physics videos! Previous Video: You Can't Run From Momentum! (a momentum introduction) Please support me on Patreon!

Demonstrating and measuring how a helmet changes impulse, impact force and change in time during a collision. Want lecture notes? This is an AP Physics 1 Topic. Content Times: 0:21 The demonstration without a helmet 1:15 The equation for Impulse 1:55 How a helmet should affect the variables 2:36 The demonstration with a helmet 3:29 Comparing with and without a helmet Next Video: Review of Momentum, Impact Force, and Impulse Multilingual? Please help translate Flipping Physics videos! Previous Video: Demonstrating Impulse is Area Under the Curve Please suppo

 example
 demonstration
 (and 6 more)

Name: Demonstrating How Helmets Affect Impulse and Impact Force Category: Momentum and Collisions Date Added: 20161208 Submitter: Flipping Physics Demonstrating and measuring how a helmet changes impulse, impact force and change in time during a collision. Want lecture notes? This is an AP Physics 1 Topic. Content Times: 0:21 The demonstration without a helmet 1:15 The equation for Impulse 1:55 How a helmet should affect the variables 2:36 The demonstration with a helmet 3:29 Comparing with and without a helmet Next Video: Review of Momentum, Impact Force, and Impuls

An elastic collision is demonstrated and analyzed. Want lecture notes? This is an AP Physics 1 Topic. A big thank you to Mr. Becke for being a guest in today’s video! Content Times: 0:25 Reading and translating the problem 1:17 The demonstration 1:52 Solving for velocity final of cart 2 3:46 Measuring the velocity final of cart 2 4:25 Checking if kinetic energy is conserved 6:22 We should have converted to meters per second Next Video: Demonstrating Impulse is Area Under the Curve Multilingual? Please help translate Flipping Physics videos! Previous Video: Int

Name: Introductory Elastic Collision Problem Demonstration Category: Momentum and Collisions Date Added: 20161124 Submitter: Flipping Physics An elastic collision is demonstrated and analyzed. Want lecture notes? This is an AP Physics 1 Topic. A big thank you to Mr. Becke for being a guest in today’s video! Content Times: 0:25 Reading and translating the problem 1:17 The demonstration 1:52 Solving for velocity final of cart 2 3:46 Measuring the velocity final of cart 2 4:25 Checking if kinetic energy is conserved 6:22 We should have converted to meters per second N

A perfectly inelastic collision is demonstrated and analyzed. Want lecture notes? This is an AP Physics 1 Topic. Content Times: 0:08 Demonstrating the Perfectly Inelastic Collision 0:41 Known values 1:34 Using Conservation of Momentum 2:22 Both objects have the same final velocity 3:37 Measuring the final velocity 4:05 Determining the relative error 4:45 Fruit Day! Next Video: Introductory Elastic Collision Problem Demonstration Multilingual? Please help translate Flipping Physics videos! Previous Vide

 example
 demonstration

(and 5 more)
Tagged with:
Terms of Use
The pages of APlusPhysics.com, Physics in Action podcasts, and other online media at this site are made available as a service to physics students, instructors, and others. Their use is encouraged and is free of charge. Teachers who wish to use materials either in a classroom demonstration format or as part of an interactive activity/lesson are granted permission (and encouraged) to do so. Linking to information on this site is allowed and encouraged, but content from APlusPhysics may not be made available elsewhere on the Internet without the author's written permission.
Copyright Notice
APlusPhysics.com, Silly Beagle Productions and Physics In Action materials are copyright protected and the author restricts their use to online usage through a live internet connection. Any downloading of files to other storage devices (hard drives, web servers, school servers, CDs, etc.) with the exception of Physics In Action podcast episodes is prohibited. The use of images, text and animations in other projects (including nonprofit endeavors) is also prohibited. Requests for permission to use such material on other projects may be submitted in writing to info@aplusphysics.com. Licensing of the content of APlusPhysics.com for other uses may be considered in the future.