Search the Community
Showing results for tags 'Graph'.
Found 43 results

We determine what data to collect to create a graph with rotational inertia as the slope of the bestfit line. #RotationalInertia  Then we collect the data and determine the rotational inertia of an irregular shape. Want Lecture Notes? This is an AP Physics 1 Topic. Content Times: 0:11 The problem 0:46 Free Body Diagram 1:31 Net Torque 3:01 Trial #1 3:52 Angular Acceleration 5:20 12 Trials and Graph 6:29 Deriving Units Next Video: How the Force of Tension on a Pulley Changes with Acceleration Multilingual? Please help translate Flipping Physics videos! Previous Video: Painter on a Scaffold  Don't Fall Off!! Please support me on Patreon! Thank you to Christopher Becke and Faiaz Rahman for being my Quality Control Team for this video.

 rotational form of newtons second law
 demonstration
 (and 3 more)

A “live” demonstration of of collecting position, velocity, and acceleration of a vertical massspring system. Want Lecture Notes? This is an AP Physics 1 topic. Content Times: 0:30 The basic setup 1:24 The equations 2:15 Position vs. Time 3:20 Velocity vs. Time 3:58 Acceleration vs. Time 5:20 Determining Period 7:09 Determining Spring Constant 8:14 Bestfit sine curve Next Video: Creating Circular Motion from Sine and Cosine Curves Multilingual? Please help translate Flipping Physics videos! Previous Video: Simple Harmonic Motion  Graphs of Mechanical Energies Please support me on Patreon! Thank you to Christopher Becke for being the sole member of my Quality Control Team for this video. Thank you to Youssef Nasr for transcribing the English subtitles of this video.

 simple harmonic motion
 graph
 (and 10 more)

Kinetic energy and elastic potential energy as functions of time graphs for a horizontal massspring system in simple harmonic motion are demonstrated. Conservation of energy is shown. Want Lecture Notes? This is an AP Physics 1 topic. Content Times: 0:12 The positions 0:40 Kinetic energy 1:49 Elastic potential energy 2:44 Total mechanical energy 5:10 Including friction Next Video: Demonstrating Position, Velocity, and Acceleration of a MassSpring System Multilingual? Please help translate Flipping Physics videos! Previous Video: Simple Harmonic Motion  Graphs of Position, Velocity, and Acceleration Please support me on Patreon! Thank you to Scott Carter, Christopher Becke, and Sawdog for being my Quality Control Team for this video. Thank you to Youssef Nasr for transcribing the English subtitles of this video.

 simple harmonic motion
 kinetic energy
 (and 11 more)

Hooke’s law is demonstrated and graphed. Spring constant, displacement from equilibrium position, and restoring force are defined and demonstrated. Want Lecture Notes? This is an AP Physics 1 topic. Content Times: 0:01 Robert Hooke 0:46 Compressing a spring using a force sensor 1:33 Graphing force as a function of position 2:14 Hooke’s Law 3:07 Demonstrating displacement from rest position 5:20 Demonstrating the spring constant 6:15 What the negative in Hooke’s Law means 7:02 The spring constant is positive 7:54 The restoring force 8:33 Elastic limit Next Video: Determining the Spring Constant, k, with a Vertically Hanging Mass Multilingual? Please help translate Flipping Physics videos! Previous Video: Instantaneous Power Delivered by a Car Engine  Example Problem Please support me on Patreon! Thank you to Aarti Sangwan, Jonathan Everett, Christopher Becke, and Scott Carter for being my Quality Control Team for this video. Thank you to Youssef Nasr for transcribing the English subtitles of this video.

 restoring force
 equilibrium position
 (and 10 more)

Name: Hooke's Law Introduction  Force of a Spring Category: Oscillations Date Added: 20180402 Submitter: Flipping Physics Hooke’s law is demonstrated and graphed. Spring constant, displacement from equilibrium position, and restoring force are defined and demonstrated. Want Lecture Notes? This is an AP Physics 1 topic. Content Times: 0:01 Robert Hooke 0:46 Compressing a spring using a force sensor 1:33 Graphing force as a function of position 2:14 Hooke’s Law 3:07 Demonstrating displacement from rest position 5:20 Demonstrating the spring constant 6:15 What the negative in Hooke’s Law means 7:02 The spring constant is positive 7:54 The restoring force 8:33 Elastic limit Next Video: Determining the Spring Constant, k, with a Vertically Hanging Mass Multilingual? Please help translate Flipping Physics videos! Previous Video: Instantaneous Power Delivered by a Car Engine  Example Problem Please support me on Patreon! Thank you to Aarti Sangwan, Jonathan Everett, Christopher Becke, and Scott Carter for being my Quality Control Team for this video. Thank you to Youssef Nasr for transcribing the English subtitles of this video. Hooke's Law Introduction  Force of a Spring

 restoring force
 equilibrium position
 (and 10 more)

Calculus based review of Universal Gravitation including Newton’s Universal Law of Gravitation, solving for the acceleration due to gravity in a constant gravitational field, universal gravitational potential energy, graphing universal gravitational potential energy between an object and the Earth, three example problems (binding energy, escape velocity and orbital energy), and Kepler’s three laws. For the calculus based AP Physics C mechanics exam. Want Lecture Notes? At 6:01 this video addresses an error in the Universal Gravitational Potential Energy Graph from the video's previous iteration. Content Times: 0:10 Newton’s Universal Law of Gravitation 1:52 Solving for the acceleration due to gravity 2:02 Universal Gravitational Potential Energy 4:52 Graph of Universal Gravitational Potential Energy between an object and the Earth 6:01 Correcting the Universal Gravitational Potential Energy Graph 7:30 Binding Energy Example Problem 9:41 Escape Velocity Example Problem 11:19 Orbital Energy Example Problem 13:52 Kepler’s Three Laws 14:17 Kepler’s First Law 16:19 Kepler’s Second Law 16:42 Deriving Kepler’s Third Law Multilingual? Please help translate Flipping Physics videos! AP Physics C Review Website Next Video: AP Physics C: Simple Harmonic Motion Review (Mechanics) Previous Video: AP Physics C: Rotational vs. Linear Review (Mechanics) Please support me on Patreon! Thank you to Aarti Sangwan, Sawdog, and Frank Geshwind for being my Quality Control team for this video.

 universal gravitation
 newtons universal law of gravitation
 (and 21 more)

Calculus based review of Simple Harmonic Motion (SHM). SHM is defined. A horizontal massspring system is analyzed and proven to be in SHM and it’s period is derived. The difference between frequency and angular frequency is shown. The equations and graphs of position, velocity, and acceleration as a function of time are analyzed. the phase constant Phi is explained. And Conservation of Mechanical Energy in SHM is discussed. For the calculus based AP Physics C mechanics exam. Want Lecture Notes? Content Times: 0:12 Defining simple harmonic motion (SHM) 0:53 Analyzing the horizontal massspring system 2:26 Proving a horizontal massspring system is in SHM 3:38 Solving for the period of a massspring system in SHM 4:39 Are frequency and angular frequency the same thing? 5:16 Position as a function of time in SHM 5:44 Explaining the phase constant Phi 6:19 Deriving velocity as a function of time in SHM 7:33 Deriving acceleration as a function of time in SHM 9:05 Understanding the graphs of position, velocity, and acceleration as a function of time in SHM 12:16 Conservation of Mechanical Energy in SHM Multilingual? Please help translate Flipping Physics videos! AP Physics C Review Website Next Video: AP Physics C: Equations to Memorize (Mechanics) Previous Video: AP Physics C: Universal Gravitation Review (Mechanics) Please support me on Patreon! Thank you to Sawdog for being my Quality Control individual for this video.

 phi
 function of time
 (and 19 more)

Name: AP Physics C: Simple Harmonic Motion Review (Mechanics) Category: Oscillations & Gravity Date Added: 20170430 Submitter: Flipping Physics Calculus based review of Simple Harmonic Motion (SHM). SHM is defined. A horizontal massspring system is analyzed and proven to be in SHM and it’s period is derived. The difference between frequency and angular frequency is shown. The equations and graphs of position, velocity, and acceleration as a function of time are analyzed. the phase constant Phi is explained. And Conservation of Mechanical Energy in SHM is discussed. For the calculus based AP Physics C mechanics exam. Want Lecture Notes? Content Times: 0:12 Defining simple harmonic motion (SHM) 0:53 Analyzing the horizontal massspring system 2:26 Proving a horizontal massspring system is in SHM 3:38 Solving for the period of a massspring system in SHM 4:39 Are frequency and angular frequency the same thing? 5:16 Position as a function of time in SHM 5:44 Explaining the phase constant Phi 6:19 Deriving velocity as a function of time in SHM 7:33 Deriving acceleration as a function of time in SHM 9:05 Understanding the graphs of position, velocity, and acceleration as a function of time in SHM 12:16 Conservation of Mechanical Energy in SHM Multilingual? Please help translate Flipping Physics videos! AP Physics C Review Website Next Video: AP Physics C: Equations to Memorize (Mechanics) Previous Video: AP Physics C: Universal Gravitation Review (Mechanics) Please support me on Patreon! Thank you to Sawdog for being my Quality Control individual for this video. AP Physics C: Simple Harmonic Motion Review (Mechanics)

 phi
 function of time
 (and 19 more)

Name: AP Physics C: Universal Gravitation Review (Mechanics) Category: Oscillations & Gravity Date Added: 20171222 Submitter: Flipping Physics Calculus based review of Universal Gravitation including Newton’s Universal Law of Gravitation, solving for the acceleration due to gravity in a constant gravitational field, universal gravitational potential energy, graphing universal gravitational potential energy between an object and the Earth, three example problems (binding energy, escape velocity and orbital energy), and Kepler’s three laws. For the calculus based AP Physics C mechanics exam. Want Lecture Notes? At 6:01 this video addresses an error in the Universal Gravitational Potential Energy Graph from the video's previous iteration. Content Times: 0:10 Newton’s Universal Law of Gravitation 1:52 Solving for the acceleration due to gravity 2:02 Universal Gravitational Potential Energy 4:52 Graph of Universal Gravitational Potential Energy between an object and the Earth 6:01 Correcting the Universal Gravitational Potential Energy Graph 7:30 Binding Energy Example Problem 9:41 Escape Velocity Example Problem 11:19 Orbital Energy Example Problem 13:52 Kepler’s Three Laws 14:17 Kepler’s First Law 16:19 Kepler’s Second Law 16:42 Deriving Kepler’s Third Law Multilingual? Please help translate Flipping Physics videos! AP Physics C Review Website Next Video: AP Physics C: Simple Harmonic Motion Review (Mechanics) Previous Video: AP Physics C: Rotational vs. Linear Review (Mechanics) Please support me on Patreon! Thank you to Aarti Sangwan, Sawdog, and Frank Geshwind for being my Quality Control team for this video. AP Physics C: Universal Gravitation Review (Mechanics)

 universal gravitation
 newtons universal law of gravitation
 (and 21 more)

Calculus based review of definite integrals, indefinite integrals, and derivatives as used in kinematics. Graphs of position, velocity, and acceleration as a function of time are compared using derivatives and integrals. Two of the uniformly accelerated motion (or kinematics) equations are derived using indefinite integrals. For the calculus based AP Physics C mechanics exam. Want Lecture Notes? Content Times: 0:11 Rearranging the acceleration equation to get change in velocity 1:41 Rearranging the velocity equation to get change in position 2:06 Comparing graphs of position, velocity, and acceleration as a function of time 3:28 Using the integral to solve for one of the uniformly accelerated motion equations 4:44 Using the integral to solve for a second uniformly accelerated motion equation FYI: I do not teach integrals until we get to Work. By then the students who are taking calculus concurrently with AP Physics C Mechanics have had enough experience with derivatives that they only freak out a little bit when I teach them integrals. Multilingual? Please help translate Flipping Physics videos! AP Physics C Review Website Next Video: AP Physics C: Momentum, Impulse, Collisions and Center of Mass Review (Mechanics) Previous Video: AP Physics C: Work, Energy, and Power Review (Mechanics) Please support me on Patreon! Thank you to Mark Kramer and Aarti Sangwan for being my Quality Control team.

 integral
 derivative
 (and 10 more)

Name: AP Physics C: Integrals in Kinematics Review (Mechanics) Category: Kinematics Date Added: 20170402 Submitter: Flipping Physics Calculus based review of definite integrals, indefinite integrals, and derivatives as used in kinematics. Graphs of position, velocity, and acceleration as a function of time are compared using derivatives and integrals. Two of the uniformly accelerated motion (or kinematics) equations are derived using indefinite integrals. For the calculus based AP Physics C mechanics exam. Want Lecture Notes? Content Times: 0:11 Rearranging the acceleration equation to get change in velocity 1:41 Rearranging the velocity equation to get change in position 2:06 Comparing graphs of position, velocity, and acceleration as a function of time 3:28 Using the integral to solve for one of the uniformly accelerated motion equations 4:44 Using the integral to solve for a second uniformly accelerated motion equation FYI: I do not teach integrals until we get to Work. By then the students who are taking calculus concurrently with AP Physics C Mechanics have had enough experience with derivatives that they only freak out a little bit when I teach them integrals. Multilingual? Please help translate Flipping Physics videos! AP Physics C Review Website Next Video: AP Physics C: Momentum, Impulse, Collisions and Center of Mass Review (Mechanics) Previous Video: AP Physics C: Work, Energy, and Power Review (Mechanics) Please support me on Patreon! Thank you to Mark Kramer and Aarti Sangwan for being my Quality Control team. AP Physics C: Integrals in Kinematics Review (Mechanics)

 integral
 derivative
 (and 10 more)

Name: Calculating Average Drag Force on an Accelerating Car using an Integral Category: Dynamics Date Added: 20160811 Submitter: Flipping Physics A vehicle uniformly accelerates from rest to 3.0 x 10^1 km/hr in 9.25 seconds and 42 meters. Determine the average drag force acting on the vehicle. Want lecture notes? This is an AP Physics C Topic. Content Times: 0:14 The Drag Force equation 0:39 The density of air 1:33 The drag coefficient 1:59 The cross sectional area 3:11 Determining instantaneous speed 4:08 Instantaneous Drag Force 4:36 Graphing Drag Force as a function of Time 5:17 The definite integral of drag force with respect to time 5:42 Average Drag Force times Total Change in Time Next Video: Instantaneous Power Delivered by a Car Engine  Example Problem Multilingual? Please help translate Flipping Physics videos! Previous Video: Average Power Delivered by a Car Engine  Example Problem Please support me on Patreon! Calculating Average Drag Force on an Accelerating Car using an Integral

A vehicle uniformly accelerates from rest to 3.0 x 10^1 km/hr in 9.25 seconds and 42 meters. Determine the average drag force acting on the vehicle. Want lecture notes? This is an AP Physics C Topic. Content Times: 0:14 The Drag Force equation 0:39 The density of air 1:33 The drag coefficient 1:59 The cross sectional area 3:11 Determining instantaneous speed 4:08 Instantaneous Drag Force 4:36 Graphing Drag Force as a function of Time 5:17 The definite integral of drag force with respect to time 5:42 Average Drag Force times Total Change in Time Next Video: Instantaneous Power Delivered by a Car Engine  Example Problem Multilingual? Please help translate Flipping Physics videos! Previous Video: Average Power Delivered by a Car Engine  Example Problem Please support me on Patreon!

An 8.53 kg pumpkin is dropped from a height of 8.91 m. Will the graph of instantaneous power delivered by the force of gravity as a function of _____ be linear? If not, what would you change to make the graph linear? (a) Time, (b) Position. Want Lecture Notes? This is an AP Physics 1 Topic. Content Times: 0:12 The example 1:08 The equation for instantaneous power 1:43 Part (a): Solving for velocity as a function of time 2:55 Part (a): Solving for power as a function of time 3:23 Part (a): Is power as a function of time linear? 4:26 Part (a): Graphing power as a function of time 5:03 Part (b): Solving for velocity as a function of position 5:58 Part (b): Solving for power as a function of position 7:02 Part (b): Is power as a function of position linear? 7:38 Part (b): How can we make the graph linear? 8:33 Part (b): Graphing power squared as a function of position Next Video: Average Power Delivered by a Car Engine  Example Problem Multilingual? Please help translate Flipping Physics videos! Previous Video: Average and Instantaneous Power Example Please support me on Patreon!

 pumkin
 instantaneous

(and 5 more)
Tagged with:

Name: Graphing Instantaneous Power Category: Work, Energy, Power Date Added: 20160628 Submitter: Flipping Physics An 8.53 kg pumpkin is dropped from a height of 8.91 m. Will the graph of instantaneous power delivered by the force of gravity as a function of _____ be linear? If not, what would you change to make the graph linear? (a) Time, (b) Position. Want Lecture Notes? This is an AP Physics 1 Topic. Content Times: 0:12 The example 1:08 The equation for instantaneous power 1:43 Part (a): Solving for velocity as a function of time 2:55 Part (a): Solving for power as a function of time 3:23 Part (a): Is power as a function of time linear? 4:26 Part (a): Graphing power as a function of time 5:03 Part (b): Solving for velocity as a function of position 5:58 Part (b): Solving for power as a function of position 7:02 Part (b): Is power as a function of position linear? 7:38 Part (b): How can we make the graph linear? 8:33 Part (b): Graphing power squared as a function of position Next Video: Average Power Delivered by a Car Engine  Example Problem Multilingual? Please help translate Flipping Physics videos! Previous Video: Average and Instantaneous Power Example Please support me on Patreon! Graphing Instantaneous Power

Want Lecture Notes? Content Times: 0:10 The initial setup 1:07 Part (a) 2:19 Part (b) 3:06 Part (c) AP Physics 1 Review Videos Next Video: Free Response Question #5  AP Physics 1  2015 Exam Solutions Previous Video: Free Response Question #3  AP Physics 1  2015 Exam Solutions Multilingual? Please help translate Flipping Physics videos! 1¢/minute: http://www.flippingphysics.com/give.html AP® is a registered trademark of the College Board, which was not involved in the production of, and does not endorse, this product. Link to The 2015 AP Physics 1 Free Response Questions

 velocity
 free body diagram

(and 5 more)
Tagged with:

Name: Free Response Question #4  AP Physics 1  2015 Exam Solutions Category: Exam Prep Date Added: 20160407 Submitter: Flipping Physics Want Lecture Notes? Content Times: 0:10 The initial setup 1:07 Part (a) 2:19 Part (b) 3:06 Part (c) AP Physics 1 Review Videos Next Video: Free Response Question #5  AP Physics 1  2015 Exam Solutions Previous Video: Free Response Question #3  AP Physics 1  2015 Exam Solutions Multilingual? Please help translate Flipping Physics videos! 1¢/minute: http://www.flippingphysics.com/give.html AP® is a registered trademark of the College Board, which was not involved in the production of, and does not endorse, this product. Link to The 2015 AP Physics 1 Free Response Questions Free Response Question #4  AP Physics 1  2015 Exam Solutions

 exam
 free response question

(and 5 more)
Tagged with:

Want Lecture Notes? Content Times: 0:11 The initial setup 1:00 Part (a) setup 2:11 Part (a) at x = D 3:07 Part (a) from x = D to x = 0 4:28 Part (a) from x = 0 to x = 3D 6:39 Part (b) 7:21 Part (b i) 7:50 Part (b ii) 8:33 Part (c) 10:14 Part (d) Question 11:12 Part (d) Answers AP Physics 1 Review Videos Next Video: Free Response Question #4  AP Physics 1  2015 Exam Solutions Previous Video: Free Response Question #2  AP Physics 1  2015 Exam Solutions Multilingual? Please help translate Flipping Physics videos! 1¢/minute AP® is a registered trademark of the College Board, which was not involved in the production of, and does not endorse, this product. Link to The 2015 AP Physics 1 Free Response Questions

 short answer
 spring
 (and 7 more)

Name: Free Response Question #3  AP Physics 1  2015 Exam Solutions Category: Exam Prep Date Added: 20160331 Submitter: Flipping Physics Want Lecture Notes? Content Times: 0:11 The initial setup 1:00 Part (a) setup 2:11 Part (a) at x = D 3:07 Part (a) from x = D to x = 0 4:28 Part (a) from x = 0 to x = 3D 6:39 Part (b) 7:21 Part (b i) 7:50 Part (b ii) 8:33 Part (c) 10:14 Part (d) Question 11:12 Part (d) Answers AP Physics 1 Review Videos Next Video: Free Response Question #4  AP Physics 1  2015 Exam Solutions Previous Video: Free Response Question #2  AP Physics 1  2015 Exam Solutions Multilingual? Please help translate Flipping Physics videos! 1¢/minute AP® is a registered trademark of the College Board, which was not involved in the production of, and does not endorse, this product. Link to The 2015 AP Physics 1 Free Response Questions Free Response Question #3  AP Physics 1  2015 Exam Solutions

 exam
 free repsonse question
 (and 7 more)

To help understand the force of friction, mr.p pulls on a wooden block using a force sensor. Want Lecture Notes? This is an AP Physics 1 topic. Content Times: 0:17 Drawing the Free Body Diagram 0:43 Summing the forces in the xdirection 1:21 Graph when the block doesn’t move 1:46 Graph with the block moving Next Video: Does the Book Move? An Introductory Friction Problem Multilingual? Please help translate Flipping Physics videos! Previous Video: Understanding the Force of Friction Equation 1¢/minute

 introduction
 mu

(and 8 more)
Tagged with:

Name: Experimentally Graphing the Force of Friction Category: Dynamics Date Added: 20150819 Submitter: Flipping Physics To help understand the force of friction, mr.p pulls on a wooden block using a force sensor. Want Lecture Notes? This is an AP Physics 1 topic. Content Times: 0:17 Drawing the Free Body Diagram 0:43 Summing the forces in the xdirection 1:21 Graph when the block doesn’t move 1:46 Graph with the block moving Next Video: Does the Book Move? An Introductory Friction Problem Multilingual? Please help translate Flipping Physics videos! Previous Video: Understanding the Force of Friction Equation 1¢/minute Experimentally Graphing the Force of Friction

 graph
 experiment

(and 8 more)
Tagged with:

Review of the Simple Harmonic Motion topics covered in the AP Physics 1 curriculum. Want [url="http://www.flippingphysics.com/ap1shmreview.html"]Lecture Notes[/url]? Content Times: 0:13 Horizontal MassSpring System 1:36 Restoring Force 2:30 Acceleration and Velocity 3:25 Deriving position function 5:25 Graphing position 6:29 Reviewing Simple Harmonic Motion basics 7:18 Position graph 7:40 Velocity graph 8:06 Acceleration graph 8:34 Kinetic Energy graph 9:01 Elastic Potential Energy graph 9:29 Total Mechanical Energy graph 10:18 Period 11:02 How period changes Multilingual? [url="http://www.flippingphysics.com/translate.html"]Please help translate Flipping Physics videos[/url]! Next Video: [url="http://www.flippingphysics.com/ap1wavesreview.html"]AP Physics 1: Mechanical Waves Review[/url] Previous Video: [url="http://www.flippingphysics.com/ap1gravitationreview.html"]AP Physics 1: Universal Gravitation Review[/url] [url="http://www.flippingphysics.com/give.html"]1Â¢/minute[/url]

In order to use Newtonâ€™s Second Law, you need to correctly draw the Free Body Diagram. This problem explains a common mistake students make involving the force applied. We also review how to find acceleration on a velocity as a function of time graph. Content Times: 0:22 The problem 0:54 Listing our known values 1:51 Drawing the Free Body Diagram 2:17 A common mistake in our Free Body Diagram 3:32 Solving the problem 4:14 Another common mistake 5:07 Why is the acceleration positive? Multilingual? [url="http://www.flippingphysics.com/translate.html"]Please help translate Flipping Physics videos[/url]! Want [url="http://www.flippingphysics.com/secondlawfriction.html"]Lecture Notes[/url]? Next Video: [url="http://www.flippingphysics.com/thirdlaw.html"]Introduction to Newtonâ€™s Third Law of Motion[/url] Previous Video: [url="http://www.flippingphysics.com/forcevectoraddition.html"]Summing the Forces is Vector Addition[/url] [url="http://www.flippingphysics.com/give.html"]1Â¢/minute[/url]

We experimentally determine the position, velocity and acceleration as a function of time for a street hockey puck that is sliding and slowing down. Is it uniformly accelerated motion? Content Times: 0:16 Experimental graph of position as a function of time 0:43 Deciding what the graph of velocity as a function of time ideally should be 1:35 Experimental graph of velocity as a function of time 2:11 Deciding what the graph of acceleration as a function of time ideally should be 2:57 Experimental graph of acceleration as a function of time Multilingual? [url="http://www.flippingphysics.com/translate.html"]Please help translate Flipping Physics videos[/url]! Want [url="http://www.flippingphysics.com/measuringuam.html"]Lecture Notes[/url]? Next Video: [url="http://www.flippingphysics.com/reviewingonedimensionalmotion.html"]Reviewing One Dimensional Motion with the Table of Friends[/url] Previous Video: [url="http://www.flippingphysics.com/graphicaluamexample.html"]Graphical UAM Example Problem[/url] [url="http://www.flippingphysics.com/give.html"]1Â¢/minute[/url]
Terms of Use
The pages of APlusPhysics.com, Physics in Action podcasts, and other online media at this site are made available as a service to physics students, instructors, and others. Their use is encouraged and is free of charge. Teachers who wish to use materials either in a classroom demonstration format or as part of an interactive activity/lesson are granted permission (and encouraged) to do so. Linking to information on this site is allowed and encouraged, but content from APlusPhysics may not be made available elsewhere on the Internet without the author's written permission.
Copyright Notice
APlusPhysics.com, Silly Beagle Productions and Physics In Action materials are copyright protected and the author restricts their use to online usage through a live internet connection. Any downloading of files to other storage devices (hard drives, web servers, school servers, CDs, etc.) with the exception of Physics In Action podcast episodes is prohibited. The use of images, text and animations in other projects (including nonprofit endeavors) is also prohibited. Requests for permission to use such material on other projects may be submitted in writing to info@aplusphysics.com. Licensing of the content of APlusPhysics.com for other uses may be considered in the future.