Search the Community
Showing results for tags 'Motion'.

Calculus based review of Simple Harmonic Motion (SHM). SHM is defined. A horizontal massspring system is analyzed and proven to be in SHM and it’s period is derived. The difference between frequency and angular frequency is shown. The equations and graphs of position, velocity, and acceleration as a function of time are analyzed. the phase constant Phi is explained. And Conservation of Mechanical Energy in SHM is discussed. For the calculus based AP Physics C mechanics exam. Want Lecture Notes? Content Times: 0:12 Defining simple harmonic motion (SHM) 0:53 Analyzing the horizontal

 phi
 function of time
 (and 19 more)

Name: AP Physics C: Simple Harmonic Motion Review (Mechanics) Category: Oscillations & Gravity Date Added: 20170430 Submitter: Flipping Physics Calculus based review of Simple Harmonic Motion (SHM). SHM is defined. A horizontal massspring system is analyzed and proven to be in SHM and it’s period is derived. The difference between frequency and angular frequency is shown. The equations and graphs of position, velocity, and acceleration as a function of time are analyzed. the phase constant Phi is explained. And Conservation of Mechanical Energy in SHM is discussed. For the calculus b

 phi
 function of time
 (and 19 more)

Proof that the Force Normal and the Force of Gravity are not a Newtonâ€™s Third Law Force Pair. Content Times: 0:26 Drawing the Free Body Diagram 1:02 Not a Newtonâ€™s Third Law Force Pair 1:37 The Force Normal Force Pair 1:55 The Force of Gravity Force Pair Multilingual? [url="http://www.flippingphysics.com/translate.html"]Please help translate Flipping Physics videos![/url] Want [url="http://www.flippingphysics.com/thirdlawmisconception.html"]Lecture Notes[/url]? Next Video: [url="http://www.flippingphysics.com/tensionforce.html"]Understanding the Tension Force[/url] Previous

Learn about Newtonâ€™s Third Law of Motion. Several examples of Newtonâ€™s Third Law Force Pairs are demonstrated and discussed. We even travel to Dandong, China. Content Times: 0:10 Newtonâ€™s Third Law 0:47 Ball and Head Force Pair 1:49 At the Ann Arbor HandsOn Museum 2:35 Why I donâ€™t like the Action/Reaction definition 3:30 Hammer and Nail Force Pair 4:20 Mr.p and Wall Force Pair 4:36 Kevin Zhang and The Great Wall Force Pair 5:23 The Great Wall Location Shots 5:36 Filming the intro Multilingual? [url="http://www.flippingphysics.com/translate.html"]Please help translate Fl

 demonstration
 pair
 (and 8 more)

Name: A Common Misconception about Newton's Third Law Force Pairs (or ActionReaction Pairs) Category: Dynamics Date Added: 09 February 2015  02:24 PM Submitter: Flipping Physics Short Description: None Provided Proof that the Force Normal and the Force of Gravity are not a Newtonâ€™s Third Law Force Pair. Content Times: 0:26 Drawing the Free Body Diagram 1:02 Not a Newtonâ€™s Third Law Force Pair 1:37 The Force Normal Force Pair 1:55 The Force of Gravity Force Pair Multilingual? View Video

Name: Introduction to Newtonâ€™s Third Law of Motion Category: Dynamics Date Added: 19 January 2015  10:48 AM Submitter: Flipping Physics Short Description: None Provided Learn about Newtonâ€™s Third Law of Motion. Several examples of Newtonâ€™s Third Law Force Pairs are demonstrated and discussed. We even travel to Dandong, China. Content Times: 0:10 Newtonâ€™s Third Law 0:47 Ball and Head Force Pair 1:49 At the Ann Arbor HandsOn Museum 2:35 Why I donâ€™t like the Action/Reaction definition 3:30 Hammer and Nail Force Pair 4:20 Mr.p and Wall Force Pair 4:36 Kevin Zhang and T

 demonstration
 pair
 (and 8 more)

We experimentally determine the position, velocity and acceleration as a function of time for a street hockey puck that is sliding and slowing down. Is it uniformly accelerated motion? Content Times: 0:16 Experimental graph of position as a function of time 0:43 Deciding what the graph of velocity as a function of time ideally should be 1:35 Experimental graph of velocity as a function of time 2:11 Deciding what the graph of acceleration as a function of time ideally should be 2:57 Experimental graph of acceleration as a function of time Multilingual? [url="http://www.flippingphysic

Name: Experimentally Graphing Uniformly Accelerated Motion Category: Kinematics Date Added: 16 January 2015  09:38 AM Submitter: Flipping Physics Short Description: None Provided We experimentally determine the position, velocity and acceleration as a function of time for a street hockey puck that is sliding and slowing down. Is it uniformly accelerated motion? Content Times: 0:16 Experimental graph of position as a function of time 0:43 Deciding what the graph of velocity as a function of time ideally should be 1:35 Experimental graph of velocity as a function of time 2:11 Deci

Students sometimes have a difficult time understanding what acceleration in meters per second squared really means. Therefore, I present acceleration as meters per second every second instead. This helps students gain a better conceptual understanding of acceleration. Content Times: 0:12 Acceleration is meters per second every second 1:22 The first demonstration 1:56 Finding the velocity at each second 3:18 Finding the position at each second 4:31 The second demonstration Multilingual? [url="http://www.flippingphysics.com/translate.html"]Please help translate Flipping Physics videos
 1 comment

 acceleration
 velcoity

(and 6 more)
Tagged with:

Name: Understanding Uniformly Accelerated Motion Category: Kinematics Date Added: 09 December 2014  02:05 PM Submitter: Flipping Physics Short Description: None Provided Students sometimes have a difficult time understanding what acceleration in meters per second squared really means. Therefore, I present acceleration as meters per second every second instead. This helps students gain a better conceptual understanding of acceleration. Content Times: 0:12 Acceleration is meters per second every second 1:22 The first demonstration 1:56 Finding the velocity at each second 3:18 Find

 acceleration
 velcoity

(and 6 more)
Tagged with:

The application of Newtonâ€™s Second Law is when you really understand what the net force equals mass times acceleration where both force and acceleration are vectors really means. Therefore, we introduce Newtonâ€™s Second Law and then do an example problem. Content Times: 0:11 Defining Newtonâ€™s Second Law 1:00 The example problem 1:51 Drawing the Free Body Diagram 2:48 The Force of Gravity 3:42 The net force in the ydirection 5:28 The acceleration of the book in the ydirection 6:38 The net force in the xdirection 7:59 Solving for the dimensions of acceleration 8:54 Constant n

 acceleration
 mass

(and 8 more)
Tagged with:

Name: Introduction to Newtonâ€™s Second Law of Motion with Example Problem Category: Dynamics Date Added: 21 November 2014  02:38 PM Submitter: Flipping Physics Short Description: None Provided The application of Newtonâ€™s Second Law is when you really understand what the net force equals mass times acceleration where both force and acceleration are vectors really means. Therefore, we introduce Newtonâ€™s Second Law and then do an example problem. Content Times: 0:11 Defining Newtonâ€™s Second Law 1:00 The example problem 1:51 Drawing the Free Body Diagram 2:48 The Force of Gra

 acceleration
 mass

(and 8 more)
Tagged with:

It is not obvious in all relative motion problems how to draw the vector diagrams. Sometimes the velocity of the object with respect to the Earth is not the hypotenuse of the velocity vector addition triangle. Here we address how to handle a problem like that. Content Times: 0:15 Reading the problem 0:40 Translating the problem 1:52 Visualizing the problem 2:17 Drawing the vector diagram 3:33 Rearranging the vector equation 4:40 Redrawing the vector diagram 5:30 The Earth subscript drops out of the equation 5:51 Solving part (a): solving for theta 6:40 Solving part (b ): solving fo

Two vehicles driven at different speeds parallel to one another is a great one dimensional way to introduce relative motion. When viewed from above using a quadcopter drone, it is even better! Thanks Aaron Fown of [url="http://www.firstuav.co"]FirstUAV[/url] for providing the wonderful, nonterrestrial viewpoint. Content Times: 0:35 Visualizing the example 1:31 Understanding the subscripts 2:46 Visualizing the Velocity of the minivan with respect to the Prius 3:33 Solving for the Velocity of the minivan with respect to the Prius 5:05 Negative vectors in relative motion 6:11 Understand

All motion is relative to a frame of reference. A simple demonstration showing this to be true. Content Times: 0:21 The demonstration 1:22 A second, similar demonstration Multilingual? [url="http://www.flippingphysics.com/translate.html"]Please help translate Flipping Physics videos![/url] Next Video: [url="http://www.flippingphysics.com/introductiontorelativemotion.html"]Introduction to Relative Motion[/url] using a Quadcopter Drone Previous Video: [url="http://www.flippingphysics.com/componentsofprojectilemotion.html"]Demonstrating the Components of Projectile Motion[/url]
 3 comments

Name: Skateboarding Frame of Reference Demonstration Category: Kinematics Date Added: 15 October 2014  02:52 PM Submitter: Flipping Physics Short Description: None Provided All motion is relative to a frame of reference. A simple demonstration showing this to be true. Content Times: 0:21 The demonstration 1:22 A second, similar demonstration Multilingual? View Video

This relative motion problem addresses how to deal with vectors that do not form right triangles. Content Times: 0:15 Reading the problem 0:32 Translating the problem 1:29 Visualizing the problem 2:30 Drawing the vector diagram 2:57 Havenâ€™t we already done this problem? 3:31 How NOT to solve the problem 4:06 How to solve the problem using component vectors 4:40 Finding component vectors 5:58 Redrawing the vector diagram 6:20 Finding the magnitude of the resultant vector 8:02 Finding the direction of the resultant vector 9:15 Showing the resultant vector angle Want [url="htt

Name: Relative Motion Problem: Solving for the angle of the moving object Category: Kinematics Date Added: 07 October 2014  03:02 PM Submitter: Flipping Physics Short Description: None Provided It is not obvious in all relative motion problems how to draw the vector diagrams. Sometimes the velocity of the object with respect to the Earth is not the hypotenuse of the velocity vector addition triangle. Here we address how to handle a problem like that. Content Times: 0:15 Reading the problem 0:40 Translating the problem 1:52 Visualizing the problem 2:17 Drawing the vector diagram

Using a toy car and a piece of paper we can visualize and understand relative motion by doing an introductory problem. Content Times: 0:13 Reading the problem 0:42 Translating the problem 1:38 Visualizing the problem 2:24 The vector diagram and equation 3:14 Isnâ€™t this vector addition? 3:30 Solving for the velocity of the car with respect to the Earth 4:44 Solving for the direction of the car with respect to the Earth 6:32 Part ( B) How far did the car travel? 7:15 New similar triangle with displacements 8:15 Solving part ( B) 9:58 Solving part (c) How long did the car travel?

 with respect to
 Earth

(and 7 more)
Tagged with:

Name: An Introductory Relative Motion Problem with Vector Components Category: Kinematics Date Added: 02 October 2014  09:52 AM Submitter: Flipping Physics Short Description: None Provided This relative motion problem addresses how to deal with vectors that do not form right triangles. Content Times: 0:15 Reading the problem 0:32 Translating the problem 1:29 Visualizing the problem 2:30 Drawing the vector diagram 2:57 Havenâ€™t we already done this problem? 3:31 How NOT to solve the problem 4:06 How to solve the problem using component vectors 4:40 Finding component vectors

Name: An Introductory Relative Motion Problem Category: Kinematics Date Added: 29 September 2014  02:58 PM Submitter: Flipping Physics Short Description: None Provided Using a toy car and a piece of paper we can visualize and understand relative motion by doing an introductory problem. Content Times: 0:13 Reading the problem 0:42 Translating the problem 1:38 Visualizing the problem 2:24 The vector diagram and equation 3:14 Isnâ€™t this vector addition? 3:30 Solving for the velocity of the car with respect to the Earth 4:44 Solving for the direction of the car with respect to

 with respect to
 Earth

(and 7 more)
Tagged with:

Name: Introduction to Relative Motion using a Quadcopter Drone (UAV) Category: Kinematics Date Added: 23 September 2014  03:21 PM Submitter: Flipping Physics Short Description: None Provided Two vehicles driven at different speeds parallel to one another is a great one dimensional way to introduce relative motion. When viewed from above using a quadcopter drone, it is even better! Thanks Aaron Fown of View Video

[font=verdana][size=4]One bullet is fired horizontally and simultaneously a second bullet is dropped from the same height. Neglecting air resistance and assuming the ground is level, which bullet hits the ground first? Content Times: 0:15 Reading the problem 0:53 Listing the known variables 1:59 Determining the answer 2:37 Demonstrating the answer 3:00 Isn't one moving faster? 3:52 The Review Want [url="http://www.flippingphysics.com/bullet.html"]Lecture Notes[/url]? [color=rgb(0,0,0)]Multilingual? Please help [url="http://www.flippingphysics.com/translate.html"]translate Flipping
 1 comment

 problem
 experiment

(and 8 more)
Tagged with:

Mr.p throws a ball toward a bucket that is 581 cm away from him horizontally. He throws the ball at an initial angle of 55° above the horizontal and the ball is 34 cm short of the bucket. If mr.p throws the ball with the same initial speed and the ball is always released at the same height as the top of the bucket, at what angle does he need to throw the ball so it will land in the bucket? Content Times: 0:14 Reading the problem 1:01 Why we can use the Range Equation 2:15 Listing what we know for the first attempt 3:06 Solving for the initial speed 4:26 Solving for the initial angle 5

Name: The Classic Bullet Projectile Motion Experiment Category: Kinematics Date Added: 20 June 2014  01:32 PM Submitter: Flipping Physics Short Description: None Provided One bullet is fired horizontally and simultaneously a second bullet is dropped from the same height. Neglecting air resistance and assuming the ground is level, which bullet hits the ground first? Content Times: 0:15 Reading the problem 0:53 Listing the known variables 1:59 Determining the answer 2:37 Demonstrating the answer 3:00 Isn't one moving faster? 3:52 The Review Want View Video

 problem
 experiment

(and 8 more)
Tagged with:
Terms of Use
The pages of APlusPhysics.com, Physics in Action podcasts, and other online media at this site are made available as a service to physics students, instructors, and others. Their use is encouraged and is free of charge. Teachers who wish to use materials either in a classroom demonstration format or as part of an interactive activity/lesson are granted permission (and encouraged) to do so. Linking to information on this site is allowed and encouraged, but content from APlusPhysics may not be made available elsewhere on the Internet without the author's written permission.
Copyright Notice
APlusPhysics.com, Silly Beagle Productions and Physics In Action materials are copyright protected and the author restricts their use to online usage through a live internet connection. Any downloading of files to other storage devices (hard drives, web servers, school servers, CDs, etc.) with the exception of Physics In Action podcast episodes is prohibited. The use of images, text and animations in other projects (including nonprofit endeavors) is also prohibited. Requests for permission to use such material on other projects may be submitted in writing to info@aplusphysics.com. Licensing of the content of APlusPhysics.com for other uses may be considered in the future.