Search the Community
Showing results for tags 'Stealth'.
-
There are two often used ways of avoiding RADAR (RAdio Detection And Ranging): Stealth and Jamming. My previous blog post covered stealth. This one will cover jamming. World War Two era planes weren't equipped with stealth technology to avoid radar, because it didn't exist yet. The air forces of the world had to figure out ways to avoid radar, and thus they figured out how to jam radar. World War Two era bombers were easily picked up by radar, so to confuse the towers, the planes released aluminum chaff. From the tower's point of view, all the signals from the chaff looked the same as the signals looked from a squadron of bombers. by jamming the tower with false signals, the airplane escaped without being tracked by the tower. Modern jammers work differently, but have the same purpose. modern radar jammers spam the radar source with false signals on the same frequency as the airplanes flying in the range of the radar. The towers still pick up the planes, but they can't distinguish the fake and real signals.
-
There are two often used ways of avoiding RADAR (RAdio Detection And Ranging): Stealth and Jamming. This blog post will cover stealth. Radar can be rendered useless or less useful if the radio waves sent out by radio towers never return to the towers themselves. Airplanes today are equipped with more than one way to hide from radar. One way planes can avoid sending radio waves back to towers is by only allowing radio waves to reflect at one angle. The B2 bomber, as shown in the picture, was engineered to be as flat as possible, this causes radar waves to bounce off the plane as if it were a flat surface, and the waves never return to the tower they came from. Another way planes avoid sending radio waves back to towers is by using a stealth coating. Special versions of the F35 fighter jet are painted with a special stealth paint. When radio waves hit the surface of one of these planes, the paint traps the waves and absorbs a large amount of the energy from them. As a result, if radio waves do make it back to the tower of origin, they make it harder for the tower to distinguish the plane from something natural, like a bird, or even the environment itself.
-
This March, the F-35 Lightning II made its first public demonstration at an air show. The U.S. Military is expected to purchase over a thousand of the new jets in total, eventually being put in service with the Navy, Air Force, and Marine Corps. The Air Force version, the F-35A, will be the lightest and most agile. The thrust to weight ratio is over one, meaning that the engine produces more thrust (191 kN!) than the weight of the aircraft. In other words, it is able to speed up while flying 90 degrees to the ground...straight up. The Marine Corps version, the F-35B, is the most powerful, in that it has a specialized engine. The thrust can be vectored down to "push" the aircraft off the ground, therefore allowing the aircraft to take off in ridiculously short distances (perfect for the Marines' shortened aircraft carriers) Lastly, the Naval version, the F-35C, has a larger wing area and strengthened landing gear for landing on an aircraft carrier. The wing area is increased simply because this version will have to fly very slow on final, meaning more lift is needed to keep the aircraft from entering an aerodynamic stall. The increased wing area provides more lifting surface area, so (by Bernoulli's principle), more air will flow over the airfoil, inducing a greater low pressure area over the wing. More lift is then created, allowing this model to control itself as very low airspeeds.
Terms of Use
The pages of APlusPhysics.com, Physics in Action podcasts, and other online media at this site are made available as a service to physics students, instructors, and others. Their use is encouraged and is free of charge. Teachers who wish to use materials either in a classroom demonstration format or as part of an interactive activity/lesson are granted permission (and encouraged) to do so. Linking to information on this site is allowed and encouraged, but content from APlusPhysics may not be made available elsewhere on the Internet without the author's written permission.
Copyright Notice
APlusPhysics.com, Silly Beagle Productions and Physics In Action materials are copyright protected and the author restricts their use to online usage through a live internet connection. Any downloading of files to other storage devices (hard drives, web servers, school servers, CDs, etc.) with the exception of Physics In Action podcast episodes is prohibited. The use of images, text and animations in other projects (including non-profit endeavors) is also prohibited. Requests for permission to use such material on other projects may be submitted in writing to info@aplusphysics.com. Licensing of the content of APlusPhysics.com for other uses may be considered in the future.