Search the Community
Showing results for tags 'forces'.
-
What? Gravity is weak? Then how am I not floating right now? This has to be a joke. It's not. Gravity is one of the four fundamental forces in our universe. The others are electromagnetic, strong nuclear, and weak nuclear forces. Gravity is the oddball in this group. It is also preventing the completion of the unification equation. While the other forces, besides E-M, have relatively short ranges, gravity does not. Gravity has infinite range, and has a bigger effect over range than other forces. Gravity is pulling the Milky Way and Andromeda galaxies together at this very moment. Gravity pulls everything together due to its range and the size of the objects being moved, but it pales in strength to the other forces. When put on the same scale as all the other forces, the force of gravity is an afterthought. At the same levels, E-M forces are magnitudes stronger than gravity. Strong and weak nuclear forces affect individual particles much more than gravity does. For example, the magnitude of E-M force between two hydrogen molecules is an undecillion times stronger than gravity. Why? Science hasn't really given a definitive answer, but we do know that the universe as we know it wouldn't exist without this weak force, because neither would we.
-
Walking is something that we do every day, without thinking about it. Its seems very simple and straight forward. You just put one foot in front of the other and you move. But it is kind of complicated. It has a lot to do with forces. Newton's laws of motion are involved. So what do forces have to do with walking? Newton's third law states that every action has an equal and opposite reaction. This is relevant to walking because when you put your foot on the ground, you are applying a force to it. In doing this, the ground also actually applies an equal force onto your foot, in the opposite direction, pushing you forward. When running, you tend to take longer strides because you are applying a larger force to the ground, so the ground must apply a larger force onto your body. When a larger force is applied to your foot, you go farther, taking a longer step. Another law of motion that is at work is Newton's first law of motion. An object in motion stays moving, and an object at rests stays at rest unless an outside force acts on it. If people didn't apply forces to the ground, they obviously wouldn't move. This is because the ground then doesn't apply a force to the persons foot. They would stay at rest. But also, if it weren't for gravity, we would all float up into space the second we took one step. This is because the ground applies a force onto us, so we are set into motion. Gravity keeps this force from pushing us all the way into space. (there is also centrifugal force that wants to fly people off of the planet, but ehh.)
Terms of Use
The pages of APlusPhysics.com, Physics in Action podcasts, and other online media at this site are made available as a service to physics students, instructors, and others. Their use is encouraged and is free of charge. Teachers who wish to use materials either in a classroom demonstration format or as part of an interactive activity/lesson are granted permission (and encouraged) to do so. Linking to information on this site is allowed and encouraged, but content from APlusPhysics may not be made available elsewhere on the Internet without the author's written permission.
Copyright Notice
APlusPhysics.com, Silly Beagle Productions and Physics In Action materials are copyright protected and the author restricts their use to online usage through a live internet connection. Any downloading of files to other storage devices (hard drives, web servers, school servers, CDs, etc.) with the exception of Physics In Action podcast episodes is prohibited. The use of images, text and animations in other projects (including non-profit endeavors) is also prohibited. Requests for permission to use such material on other projects may be submitted in writing to info@aplusphysics.com. Licensing of the content of APlusPhysics.com for other uses may be considered in the future.