Jump to content

Search the Community

Showing results for tags 'friction'.



More search options

  • Search By Tags

    Type tags separated by commas.
  • Search By Author

Content Type


Forums

  • Physics News
    • Announcements
    • News Headlines
    • Physics In Action Podcast
  • General
    • Introductions
    • APlusPhysics Alumni
    • Site Suggestions & Help
    • Homework Help
    • Labs and Projects
    • Break Room
    • TV & Movie Physics
    • Video Discussions
    • STEM Discussion
  • Course Meeting Rooms
    • Honors and Regents Physics
    • AP Physics 1/2
    • AP Physics C

Categories

  • APlusPhysics Guides
  • Books
  • AP Physics 1/2
    • General / Other
    • Kinematics
    • Dynamics
    • UCM & Gravity
    • Impulse and Momentum
    • WEP
    • Rotational Motion
    • Oscillations
    • Fluids
    • Thermodynamics
    • Electrostatics
    • Circuits
    • Magnetism
    • Waves
    • Modern Physics
    • AP Exam Prep
  • AP Physics C
    • General / Other
    • Kinematics
    • Dynamics
    • WEP
    • Momentum & Impulse
    • Rotation
    • Gravitation
    • Oscillations
    • Electrostatics
    • Circuits
    • Magnetism
    • Induction
    • Exam Prep
  • Regents / Honors Physics
    • General / Other
    • Math Review
    • Kinematics
    • Dynamics
    • UCM & Gravity
    • Momentum & Impulse
    • Work, Energy, Power
    • Electricity
    • Magnetism
    • Waves
    • Modern Physics
    • Exam Prep
  • Simulations / Models

Blogs

  • TestUser's Blog
  • Physics in Flux
  • Mr. Powlin
  • Blog willorn
  • Blog awalts
  • Santa Claus is REAL!!!
  • Blog coltsfan
  • Blog rWing77IHS
  • Blog soccergirl
  • Blog hoopsgirl
  • Blog caffeinateddd
  • Blog Sbutler93
  • Blog PhysicsInAction
  • Blog bazinga
  • Blog WoWAngela
  • Blog probablykevin
  • Blog NewFoundGlory
  • Blog DANtheMAN
  • Blog Soccerboy2003D
  • Blog moe.ron
  • Blog challengerguy
  • Blog bxh8620
  • Blog darkassassin
  • Blog ohyeahphysics
  • Radio
  • Blog jade
  • North Salem High School AP-B Physics Blog
  • Blog landshark69
  • Blog Tiravin
  • Blog flipgirl
  • questioning everything
  • emma123321's Blog
  • Blog goNavy51
  • Blog MrPhysics
  • Sara T's Blog
  • hollyferg's Blog
  • theo12345's Blog
  • Blog lemonlime799
  • Stardust's Blog
  • Blog lacrosse12
  • Blog xcrunner92
  • Blog Bob Enright
  • Blog Swagmeister11
  • Blog ThatGuy
  • Blog Kapow
  • Blog Doctor Why
  • Blog [not]TheBrightestBulb
  • Blog Wunderkind5000
  • Blog daboss9
  • Blog OffInMyOwnWorld
  • Fg = (Fizzix)(Girl)
  • Blog 136861
  • Blog Albert Hawking
  • Blog gburkhart
  • Blog AldTay
  • Kat's corner
  • Danielle17's Blog
  • Mermaids Lagoon
  • RaRaRand
  • rtsully829's Blog
  • Patchy's Blog
  • skyblue22's Blog
  • HaleighT's Blog
  • dwarner's Blog
  • JBrown3's Blog
  • Christina H.'s Blog
  • Do cats always land on their feet?
  • LilBretz's Physics Blog
  • jay day
  • Blog smithr7
  • Blog keeth
  • PepperJack's Blog
  • jbilodeau's Blog
  • Blogging by Nathaniel
  • Physics Blog
  • leiser24's Blog
  • blog 1
  • Blog jmcpherson82
  • Blog HannahG
  • Blog AlphaGeek
  • Blog sarabuckbee
  • Blog mathgeek15
  • Yay physics!
  • Blog goalkeeper0
  • Blog lshads
  • Dodgeball
  • Blog caffeinefueledphysics
  • Blog midnightpanther
  • CMaggio's Blog
  • Blog bdavis
  • Blog MrMuffinMan
  • Blog denverbroncos
  • Blog DavidStack
  • Blog CharlieEckert
  • Blog SwagDragon15
  • Blog jfrachioni
  • Blog PostMeister
  • NevinO's Blog
  • José P's Blog
  • JDiddyInDaHouse's Blog
  • npignato's Blog
  • Above & Beyond
  • AndrewB's Blog
  • The Awesome Blog
  • Pineapple Grotto
  • physics blog
  • JamesWil's Blog
  • How does Iron Man fly?
  • KC12
  • Physics of Cheerleading
  • Elijah35's Blog
  • Physics?
  • Blog HannahG
  • mgiamartino's Blog
  • ericaplukas' Blog
  • as151701's Blog
  • Physics yeah!
  • TayCro
  • ACorb16's Blog
  • Patricks Blog with friends
  • Patricks Blog with friends
  • CM YAAAAAHHHHH
  • Ben's Post
  • Wise words from Leon Sandcastle
  • What Is A CT Scan
  • Physics Blog
  • Physics Of Videogames
  • ClarkK's Blog
  • Darts
  • Euclidean Blog
  • jfrachioni's Blog
  • Momentumous' Blog
  • goalkeeper0's Blog
  • The Blog of SCIENCE
  • physics on roller coasters
  • physics on swimming
  • physics on softball
  • physics on bike riding
  • The Real Blog, the Best Blog
  • RTB24's Blog
  • Physics!
  • PHYSICS courtesy of Shabba Ranks.
  • physicsguy#1
  • Walsherific Blogging!
  • Give me you're best shot fysics
  • Tired and a little dehydrated
  • bazinga818's Blog
  • TerminalVelociraptor
  • ThatBlogOverThere
  • Blog Having Nothing to do with Physics
  • Sarcasm And Some Physics Too
  • MarcelaDeVivo's Blog
  • martella6's Blog
  • Physics in the real world
  • abbyeschmitz's Blog
  • michaelford3's Blog
  • imani2014's Blog
  • kpluk3's Blog
  • hannahz's Blog
  • Celisse_R's Blog
  • Stephanie528's Blog
  • reedelena's Blog
  • Brittany16's Blog
  • OksanaZ's Blog
  • ihsseniorhill
  • Lynn152461's Blog
  • bailliexx13's Blog
  • hann129's Blog
  • Celeena's Blog
  • necharles17's Blog
  • Ben Shelton's Blog
  • cierraw's reflection on physics class
  • Amanda's Blog
  • Abbeys Blog
  • dspaker's Blog
  • Chanae's Blog
  • Halo Physics
  • Sandra's Blog
  • anna's Blog
  • SabrinaJV's Blog
  • kenzie10's Blog
  • hecht0520's Blog
  • DianeTorres' Blog
  • sputnam14
  • mitchell44's Blog
  • physics
  • happytoast's Blog
  • Basketball44
  • physics around us
  • Theo Cup
  • Merkel's Blog
  • claremannion's Blog
  • maddiejeanne15's Blog
  • Basketball Physics
  • PfFlyer17
  • jackbowes10's Blog
  • mt8397's Blog
  • zach_memmott11's Blog
  • emvan2's Blog
  • michaela1707's Blog
  • Faith DeMonte
  • Physics with Marisa
  • kenzie10's Blog
  • Kirch's Blog
  • theantonioj's Blog
  • Joe13's Blog
  • Zachary Denysenko's Blog
  • perrymoss' Blog
  • perrymoss' Blog
  • Celisse_R's Blog
  • Regents Physics
  • cyan1's Blog
  • Reflection on Physics Class (3rd quarter)
  • physicsgal1's Blog
  • cgl15's Blog
  • Beginner Blogger
  • Reflections on blogs
  • Fezziksphysics' Blog
  • Physics824
  • PhunPhysics's Blog
  • pinkblue2's Blog
  • aphysics15's Blog
  • kphysics15
  • GoArrows15's Blog
  • mphysics' Blog
  • physicsislife's Blog
  • A High Schooler's HP Blog
  • kphysics' Blog
  • dls715's Blog
  • Muchfungophysics!'s Blog
  • apfphysics15's Blog
  • Hot Dog! Is that science?!
  • purple15's Blog
  • sciencegirl123's Blog
  • atrestan15's Blog
  • Seriously, was there homework?
  • #Physicsislife
  • billnyethescienceguy's Blog
  • Novice Blogger
  • Science4Life's Blog
  • adeck15's Blog
  • physicsisawesome's Blog
  • Rules on How to Rule the Kingdom of Physics
  • Rules on How to Rule the Kingdom of Physics
  • Sam's Blogging Blog of Blogginess
  • ck's Blog
  • jack denial's blog
  • PhysX's Blog
  • jgalla's Blog
  • thisregistrationsucks' Blog
  • AP Physics C - The Final Frontier
  • Playground of the Mind with Dan
  • Mike V.'s Physics Blog
  • ariannatorpey's Blog
  • Michael783's Blog
  • Michael783's Blog
  • JessByrnes717's Blog
  • JessByrnes717's Blog
  • kmiller0212's Blog
  • The Kowalski Dimension
  • joshdeutsch's Blog
  • tuttutgoose's Blog
  • tuttutgoose's Blog
  • Kylee's Physics Blog
  • ItownEagl3's Blog
  • Elenarohr's Blog
  • james000345's Blog
  • Blogging Assignment
  • Lia's blog
  • KalB's Blog
  • NatalieB's Blog
  • kyraminchak12's Blog
  • t_hess10's Blog
  • Bootsy:)'s Blog
  • Ameliaâ„¢'s Blog
  • moritz.zoechling's Blog
  • Wibbly Wobbly Timey Wimey Physics
  • Hannah K's Blog:-)
  • That AP Physics C blog doe
  • Mandy's Blog
  • Quinn's Blog
  • jacmags' Blog
  • kelsey's Blog
  • Haley Fisher Blog
  • Jman612's Blog
  • A-Wil's Physics C Blog
  • morganism2.0's Blog
  • mdeng351's Blog
  • heather_heupel's Blog
  • CoreyK's Blog
  • isaacgagarinas' Blog
  • Mary_E27's Blog
  • zach_m's Blog
  • D Best Blog posts
  • Grace21's Blog
  • Grace21's Blog
  • ally_vanacker's Blog
  • natemoore10's Blog
  • The Physics (or lackthereof) of The Hobbit
  • Fee-oh-nuh's Blog
  • Physcics in eating food
  • ErikaRussell's Blog
  • Djwalker06's Blog
  • aschu103's Blog
  • Evan Plattens blog
  • danvan13's Blog
  • AnnieB's Blog
  • Jwt's Blog
  • aj31597's Blog
  • miranda15's Blog
  • miranda15's Blog
  • Monigle123's Blog
  • The Physics of a Slapshot
  • devon000885's Blog
  • devon000885's Blog
  • jakeb168 blog
  • physics of my life
  • Danny's Blog
  • Matts blog
  • Ryanz18's Blog
  • Ryanz18's Blog
  • Alyssa's Blog
  • Tuskee's Blog
  • Physics in Running!
  • konneroakes' Blog
  • B-Reezy64's Blog
  • WanidaK's Blog
  • Physics in falling
  • Physics in falling
  • Physics everywhere
  • The Race
  • NYC physics
  • JamesG's Blog
  • Megan's Blog
  • mikedangelo13's Blog
  • Z824's Blog
  • How Gwen Stacy Died (Physics Version)
  • Harrison's Blog
  • Kgraham30's Blog
  • Physics in the Modern World
  • jazmine2497's Blog
  • yoyo's Blog
  • Colby's Blog
  • Colby's Blog
  • All da Physics
  • Zmillz15's Blog
  • irennkluw's Blog
  • Walter Lewin
  • fminton20's Blog
  • Ryanz18's Blog
  • Ryanz18's Blog
  • Antonio Morales
  • PaperLand
  • stargazer14
  • Hannah's Blog
  • Just Some Thoughts on Physics
  • Nate's Blog
  • Anna's APC Blog
  • JesseLefler
  • A Diver's look at physics
  • Physic
  • IVIR GREAT's Physics
  • Physics Blog
  • Z's Blog
  • ZZ's Blog
  • Alpha Baker Gamma
  • Phyzx
  • a blog about physics
  • Ashley's Blog
  • Life
  • State of the Art Novel InFlowTech 1Gearturbine RotaryTurbo 2Imploturbocompressor One Compression Step
  • Nicole's Blog
  • Phys-X
  • Fun With Physics
  • Physics in the Real World
  • Physics and Video Games
  • Physics C and How it Relates to Me
  • My Life, Baseball and Physics
  • My Journey in Physics
  • CVs Blog
  • Blogs
  • Kerbal Space Program: Nicholas Enterprises
  • Actual Physics from an Actual Physics Student
  • A Blog
  • World of Physics
  • Kayla's Blog
  • So, I guess I signed up for another year of ap physics...
  • Physics take two
  • Dissertation writing service
  • eclark
  • About Me
  • Physics of Video Games
  • An Physic
  • Paramount California University
  • Jeremy Walther
  • The Physics of Swimming
  • Physics Blog
  • RK's Physics Blog
  • AP Physics C Student Blog
  • jrv12's physics blog
  • Captain's Log
  • Physics blogs
  • Important Tips You Should Consider When Searching For A Dissertation Topic
  • About me
  • The Physics Behind Life
  • Aaron's Coverage
  • Home is Where Your Displacement is Zero
  • Dog with a Blog
  • Don't Stop Me Now
  • CLICKBAIT TITLE
  • Soccer News
  • A Queue of Posts
  • Dat Music Kid's Blog
  • Getting the most out of studying
  • Bogart's Blogging Bonanza
  • Foul ball physics
  • GoDissertationHelp
  • Affordable Assignment Help Services for Students

Categories

  • Introductory Concepts
  • Kinematics
  • Dynamics
  • Momentum and Collisions
  • Circular Motion & Gravity
  • Rotational Motion
  • Work, Energy, Power
  • Oscillations
  • Fluid Mechanics
  • Thermodynamics
  • Electricity & Magnetism
  • Sound & Music
  • Waves
  • Optics
  • Modern Physics
  • Space
  • Sports & Recreation
  • Other
  • Regents / Honors Physics Tutorials
    • General
    • Kinematics
    • Dynamics
    • UCM & Gravity
    • Momentum Impulse & Collisions
    • Work Energy & Power
    • Electricity & Magnetism
    • Waves
    • Modern Physics
    • Exam Prep
  • AP-1/2 Physics Tutorials
    • General
    • Kinematics
    • Dynamics
    • Momentum
    • Rotational Motion
    • Work Energy & Power
    • UCM & Gravity
    • Oscillations
    • Fluids
    • Thermal Physics
    • Electrostatics
    • Circuits
    • Magnetism
    • Waves
    • Optics
    • Modern Physics
    • Exam Prep
  • AP-C Physics Tutorials
    • Vector Math
    • Kinematics
    • Dynamics
    • Work Energy & Power
    • Linear Momentum
    • Uniform Circular Motion
    • Rotation
    • Angular Momentum
    • Oscillations & Gravity
    • Electrostatics
    • Circuits
    • Magnetism
    • EM Induction
    • Exam Prep
  • Modeling and Simulation
  • Kerbal Space Program
  • Hewitt Drew-It!
    • Mechanics
    • Electricity & Magnetism
    • Properties of Matter
    • Fluids
    • Thermal Physics
    • Waves
    • Light
    • Modern Physics

Find results in...

Find results that contain...


Date Created

  • Start

    End


Last Updated

  • Start

    End


Filter by number of...

Joined

  • Start

    End


Group


AIM


MSN


Website URL


ICQ


Yahoo


Jabber


Skype


Location


Interests


Biography


Location


Interests


Occupation

Found 46 results

  1. Name: Understanding the Force of Friction Equation Category: Dynamics Date Added: 2015-08-18 Submitter: Flipping Physics The Force of Friction Equation is actually three equations is one. Learn why! Want Lecture Notes? This is an AP Physics 1 topic. Content Times: 0:00 The basic Force of Friction Equation 0:20 One Kinetic Friction Equation 0:39 The Two Static Friction Equations 1:40 Example Free Body Diagram 2:16 The direction of the Force of Friction 3:20 Determining the magnitude of the Force of Static Friction 4:09 Understanding the “less than or equal” sign 6:08 If the “less than or equal” sign were not there Next Video: Experimentally Graphing the Force of Friction Multilingual? Please help translate Flipping Physics videos! Previous Video: Introduction to the Coefficient of Friction 1¢/minute Understanding the Force of Friction Equation
  2. Bobby teaches the basics of friction and the differences between Static and Kinetic Friction. Want Lecture Notes? This is an AP Physics 1 topic. Content Times: 0:11 Basic definition of friction 0:40 What causes friction? 1:30 Static and kinetic friction demonstrated 2:10 Friction is independent of surface area 2:47 The direction of the force of friction Multilingual? Please help translate Flipping Physics videos! Next Video: Introduction to the Coefficient of Friction Previous Video: An Introductory Tension Force Problem 1¢/minute
  3. Name: Introduction to the Coefficient of Friction Category: Dynamics Date Added: 2015-08-09 Submitter: Flipping Physics Please do not confuse the Coefficient of Friction with the Force of Friction. This video will help you not fall into that Pit of Despair! Want Lecture Notes? This is an AP Physics 1 topic. Content Times: 0:00 The equation for the Force of Friction 0:17 Mu, the symbol for the Coefficient of Friction 1:21 Tables of Coefficients of Friction 2:49 Comparing the values of static and kinetic coefficients of friction 3:54 A typical range of values Next Video: Understanding the Force of Friction Equation Multilingual? Please help translate Flipping Physics videos! Previous Video: Introduction to Static and Kinetic Friction by Bobby 1¢/minute Introduction to the Coefficient of Friction
  4. Name: Introduction to Static and Kinetic Friction by Bobby Category: Dynamics Date Added: 2015-08-07 Submitter: Flipping Physics Bobby teaches the basics of friction and the differences between Static and Kinetic Friction. Want Lecture Notes? This is an AP Physics 1 topic. Content Times: 0:11 Basic definition of friction 0:40 What causes friction? 1:30 Static and kinetic friction demonstrated 2:10 Friction is independent of surface area 2:47 The direction of the force of friction Multilingual? Please help translate Flipping Physics videos! Next Video: Introduction to the Coefficient of Friction Previous Video: An Introductory Tension Force Problem 1¢/minute Introduction to Static and Kinetic Friction by Bobby
  5. Review of the topics of Work, Energy, Power and Hooke’s Law covered in the AP Physics 1 curriculum. Content Times: 0:18 Work 1:38 Kinetic Energy 2:13 Elastic Potential Energy 3:02 Gravitational Potential Energy 4:02 Work and Energy are in Joules 4:58 Conservation of Mechanical Energy 5:54 Work due to Friction equals the Change in Mechanical Energy 6:46 Power 7:46 Hooke’s Law Multilingual? [url="http://www.flippingphysics.com/translate.html"]Please help translate Flipping Physics videos[/url]! Want [url="http://www.flippingphysics.com/ap1-work-review.html"]Lecture Notes[/url]? Next Video: [url="http://www.flippingphysics.com/ap1-momentum-review.html"]Linear Momentum and Impulse Review for AP Physics 1[/url] Previous Video: [url="http://www.flippingphysics.com/ap1-dynamics-review.html"]Dynamics Review for AP Physics 1[/url] [url="http://www.flippingphysics.com/give.html"]1¢/minute[/url]
  6. Review of all of the Dynamics topics covered in the AP Physics 1 curriculum. Content Times: 0:18 Inertial Mass vs. Gravitational Mass 1:14 Newton’s First Law of Motion 2:20 Newton’s Second Law of Motion 3:17 Free Body Diagrams 4:29 Force of Gravity or Weight 4:41 Force Normal 5:32 Force of Friction 7:32 Newton’s Third Law of Motion 8:20 Inclines 9:41 Translational Equilibrium Multilingual? [url="http://www.flippingphysics.com/translate.html"]Please help translate Flipping Physics videos![/url] Want [url="http://www.flippingphysics.com/ap1-dynamics-review.html"]Lecture Notes[/url]? Next Video: [url="http://www.flippingphysics.com/ap1-work-review.html"]Work, Energy and Power Review for AP Physics 1[/url] Previous Video: [url="http://www.flippingphysics.com/ap1-kinematics-review.html"]Kinematics Review for AP Physics 1[/url] [url="http://www.flippingphysics.com/give.html"]1¢/minute[/url]
  7. Name: Work, Energy and Power Review for AP Physics 1 Category: Exam Prep Date Added: 13 March 2015 - 08:25 AM Submitter: Flipping Physics Short Description: None Provided Review of the topics of Work, Energy, Power and Hooke’s Law covered in the AP Physics 1 curriculum. Content Times: 0:18 Work 1:38 Kinetic Energy 2:13 Elastic Potential Energy 3:02 Gravitational Potential Energy 4:02 Work and Energy are in Joules 4:58 Conservation of Mechanical Energy 5:54 Work due to Friction equals the Change in Mechanical Energy 6:46 Power 7:46 Hooke’s Law Multilingual? View Video
  8. Name: Dynamics Review for AP Physics 1 Category: Exam Prep Date Added: 09 March 2015 - 09:36 AM Submitter: Flipping Physics Short Description: None Provided Review of all of the Dynamics topics covered in the AP Physics 1 curriculum. Content Times: 0:18 Inertial Mass vs. Gravitational Mass 1:14 Newton’s First Law of Motion 2:20 Newton’s Second Law of Motion 3:17 Free Body Diagrams 4:29 Force of Gravity or Weight 4:41 Force Normal 5:32 Force of Friction 7:32 Newton’s Third Law of Motion 8:20 Inclines 9:41 Translational Equilibrium Multilingual? View Video
  9. In order to use Newton’s Second Law, you need to correctly draw the Free Body Diagram. This problem explains a common mistake students make involving the force applied. We also review how to find acceleration on a velocity as a function of time graph. Content Times: 0:22 The problem 0:54 Listing our known values 1:51 Drawing the Free Body Diagram 2:17 A common mistake in our Free Body Diagram 3:32 Solving the problem 4:14 Another common mistake 5:07 Why is the acceleration positive? Multilingual? [url="http://www.flippingphysics.com/translate.html"]Please help translate Flipping Physics videos[/url]! Want [url="http://www.flippingphysics.com/second-law-friction.html"]Lecture Notes[/url]? Next Video: [url="http://www.flippingphysics.com/third-law.html"]Introduction to Newton’s Third Law of Motion[/url] Previous Video: [url="http://www.flippingphysics.com/force-vector-addition.html"]Summing the Forces is Vector Addition[/url] [url="http://www.flippingphysics.com/give.html"]1¢/minute[/url]
  10. Name: Using Newton's Second Law to find the Force of Friction Category: Dynamics Date Added: 12 January 2015 - 11:59 AM Submitter: Flipping Physics Short Description: None Provided In order to use Newton’s Second Law, you need to correctly draw the Free Body Diagram. This problem explains a common mistake students make involving the force applied. We also review how to find acceleration on a velocity as a function of time graph. Content Times: 0:22 The problem 0:54 Listing our known values 1:51 Drawing the Free Body Diagram 2:17 A common mistake in our Free Body Diagram 3:32 Solving the problem 4:14 Another common mistake 5:07 Why is the acceleration positive? Multilingual? View Video
  11. We define and discuss how to draw Free Body Diagrams which are also called Force Diagrams. In addition we define the force normal and the force applied. Force of friction and center of mass are briefly discussed, however, a much more detailed discussion of each is left for later lessons. Free Body Diagrams are drawn on a level surface and on an incline. Content Times: 0:12 Defining Free Body Diagram or Force Diagram 0:46 Center of mass 1:13 The force of gravity 2:08 The force normal 3:28 Adding a force applied 4:02 The force of friction 4:53 Adding an incline 5:54 The force of friction caused by the incline Multilingual? [url="http://www.flippingphysics.com/translate.html"]Please help translate Flipping Physics videos![/url] Want [url="http://www.flippingphysics.com/free-body-diagram.html"]Lecture Notes[/url]? Next Video: [url="http://www.flippingphysics.com/reality-of-fbd.html"][color=rgb(0,0,0)][font=Helvetica][size=3]The Reality of our First Free Body Diagram[/size][/font][/color][/url] Previous Video: [url="http://www.flippingphysics.com/weight-not-mass.html"]Weight and Mass are Not the Same[/url] [url="http://www.flippingphysics.com/give.html"]1¢/minute[/url]
  12. Name: Introduction to Free Body Diagrams or Force Diagrams Category: Dynamics Date Added: 13 November 2014 - 09:53 AM Submitter: Flipping Physics Short Description: None Provided We define and discuss how to draw Free Body Diagrams which are also called Force Diagrams. In addition we define the force normal and the force applied. Force of friction and center of mass are briefly discussed, however, a much more detailed discussion of each is left for later lessons. Free Body Diagrams are drawn on a level surface and on an incline. Content Times: 0:12 Defining Free Body Diagram or Force Diagram 0:46 Center of mass 1:13 The force of gravity 2:08 The force normal 3:28 Adding a force applied 4:02 The force of friction 4:53 Adding an incline 5:54 The force of friction caused by the incline Multilingual? View Video
  13. If you hold your feet flat or point them, does it change how far you slide. This video shows the answer and explains why using the concept of drag force. Content Times: 0:26 Showing the two foot positions 0:57 Defining aerodynamic 1:41 Defining the Drag Force 2:32 A closer look at the cross sectional area 4:04 Showing the answer 5:05 Comparing splashes 5:43 A second demonstration 6:22 Many thanks Multilingual? [url="http://www.flippingphysics.com/translate.html"]Please help translate Flipping Physics videos![/url] Another Drag Force Video: [url="http://www.flippingphysics.com/the-euler-method.html"]A Brief Look at the Force of Drag using Numerical Modeling (or The Euler Method)[/url] Thank you Rhonda Petty of [url="http://www.ewashtenaw.org/government/departments/parks_recreation/rollinghills/rolling%20hills.html"]Rolling Hills Water Park[/url] Thank you Aaron Fown of [url="http://www.firstuav.co"]FirstUAV[/url] for the aerial footage [url="http://www.flippingphysics.com/give.html"]1¢/minute[/url]
  14. Name: Do Your Feet Affect How Far You Slide on a Water Slide? Category: Dynamics Date Added: 22 October 2014 - 01:39 PM Submitter: Flipping Physics Short Description: None Provided If you hold your feet flat or point them, does it change how far you slide. This video shows the answer and explains why using the concept of drag force. Content Times: 0:26 Showing the two foot positions 0:57 Defining aerodynamic 1:41 Defining the Drag Force 2:32 A closer look at the cross sectional area 4:04 Showing the answer 5:05 Comparing splashes 5:43 A second demonstration 6:22 Many thanks Multilingual? View Video
  15. Today was one of those days when all the roads were covered in snow, which is bad for driving and even worse for running. A few steps in that salty slush and you'll be slipping all over the place. What I've found is that snow sticks to the bottom of my shoes and stays there, so rather than my rubber soles trying to get traction with snow, there is just more snow trying to get traction with the snow. This drastically reduces the coefficient of static friction between my shoes and the road, causing my feet to slip every step which gets really annoying after about 20 feet. Also less frictional force means less effect from newton's third law and more energy wasted every step making running a tedious task at best.
  16. Bob is barreling down the thruway in his truck at 40 m/s when a crash occurs in front of it. The driver wants to stop in the shortest distance possible. He slams on the brakes. Before the invention and implementation of the Anti-lock brake system, or ABS, the truck's tires would have locked up and the truck would have slid into the crash. Why? When brakes cause tires to lock up, the type of friction between the tires and road changes from static friction to kinetic friction. This decreases the total force of friction between the surfaces. Because of the decrease in force opposing the truck's motion, the truck cannot stop in a short distance. How does the ABS prevent this? The Anti-lock brake system prevents the tires from locking up. Therefore, the type of friction between the tires and the road is always static, the strongest type of friction. The implementation of ABS into modern cars and trucks has prevented crashes from panicked drivers, such as Bob, by allowing them to come to a complete stop in shorter distances than before possible, even better than experienced drivers using advanced braking techniques without ABS.
  17. When taking corners quickly, the biggest worry most drivers should have is slipping and losing control of the car. This happens when a driver takes the corner too fast. The physics of taking a flat corner depends on the equation vmax = Sqrt(mu*r*g). mu, the coefficient of static friction, is constant, as is g, the acceleration due to gravity. Therefore, a driver trying to take a corner as quickly as possible would like to make the radius of the turn as large as possible to allow for a higher vmax, keeping his car from slipping at higher speeds. But how? Doesn't a road have a defined radius? Yes, and no. The picture explains it. The arrow in the figure is what's called a "line" this is the best possible way for a car to take a corner at the highest speed. The line a regular driver would take is very curved, mimicking the road, and not allowing for a high vmax due to the small radius. A race car driver would take a better line. The racer's line is significantly less curved than the regular driver's line, making the radius much larger, allowing for a higher vmax . The racecar driver starts and ends wide of the inside and hits the apex of the turn, allowing for the least curved line possible. To conclude, when trying to take a corner quickly, the driver of the car should start out wide, hit the apex, and end wide, causing a relatively high radius and a relatively high vmax, without having the car slip off the road.
  18. We are having trouble understanding the concept of question number 13 below: (we figured out the first ones OK) Base your answers to questions 9 through 13 on the information below. A manufacturer’s advertisement claims that their 1,250-kilogram (12,300-newton) sports car can accelerate on a level road from 0 to 60 miles per hour (0 to 26.8 meters per second) in 3.75 seconds. 9. Determine the acceleration, in meters per second2, of the car according to the advertisement. 10. Calculate the net force required to give the car the acceleration claimed in the advertisement. [show all work, including the equation and substitution with units.] 11. What is the normal force exerted by the road on the car? 12. The coefficient of friction between the car’s tires and the road is 0.80. Calculate the maximum force of friction between the car’s tires and the road. [show all work, including the equation and substitution with units.] 13. Using the values for the forces you have calculated, explain whether or not the manufacturer’s claim for the car’s acceleration is possible.
  19. So my dog just growled and I thought I should do a blog post on her since I cannot think of any ideas. I was just playing fetch with Pearl in my house, which has hard wood floor (the real kind). Pearl ran on the area carpet onto the hardwood, but when she tried to stop, she ended up skidding past the ball into the fireplace (its just a hole in the wall made of brick so she was unharmed). So here's the play-by-play: When Pearl was running on the carpet, she was able to get enough contraction to accelerate forward. Once Pearl hit the hardwood floor, she couldn't accelerate or decelerate as easy as when she was on the carpet without the friction on her paws. When she reached the ball, she attempted to stop abruptly, however, the with the low friction on the hardwood floor, she slid past the ball into the fireplace. While my dog is very smart, she is not smart enough to learn physics. But if she could, Pearl would probably not slide into the fireplace every time we play ball. At least I can get amusement from she sliding all over the place.
  20. Okay, so today i was skateboarding, thinking about blog posts, but also thinking about all the forces and such that go into just doing a few tricks. Such as the kickflip, where the board spins on the lengthwise axis (for those of you not skateboarding people). It needs the physics of the ollie, which is downward force on the tail, force upwards because of the fulcrum of one of the axles, and forward momentum from pushing with the front foot, for an inertial fulcrum that rotates the board up into the air. From there, the rotation is caused by a downward force on the edge of the board, but, the force often isn't so much downward as it is across, similar to how the ollie levels the board not by pushing down, but across. That's the part that blew my mind, most of the forces and tricks using a skateboard are only possible because of the increase in friction from the grip tape, making the entire idea of skateboarding reliant on friction, not just with rolling down a hill and stopping, but every trick involved NEEDS friction to be done. Kinda just something cool i thought of.
  21. Drifting had a lot to do with physics. I'm just gonna start right in with friction. Friction is one of the essentials when it comes to the physics of drifting. The amount of friction between the tires of a car and the surface depends on a lot of key factors. One factor is the surface and the condition of the surface. The amount of friction between the tires of the car and the surface can change because different surfaces have different patterns and different amounts of resistivity to sliding. On the reference table there is a difference in the coefficient of friction between asphalt and concrete. Rubber on asphalt has a kinetic coefficient of friction of .67 while on concrete it is .68. This may not seem like a huge difference but it can be. These numbers change a lot when the condition of the surface is change, for example when it gets wet or when the temperature changes. Friction also has a lot to do with the movement of the car. There is a difference between kinetic and static friction. Normally there is a higher coefficient of friction with static then kinetic. This is what really causes the car to start whipping around when drifting. There's a lot more then just friction that plays a role in drifting. Weight shifting and acceleration both play a huge part in the drifting of a car. Most drift cars are rear wheel drive meaning that the driving force is coming from the back wheels not the front ones. When they look to accelerate the rear wheels try to find grip. With rear wheel drive cars there's less sliding and more grip because when the weight is shifted to the back, the car grips better because the center of gravity for the car moves slightly backward. This may seem like the opposite effect when it comes to drifting but there's more to it. Most drift cars have a locking rear differential. This means that when the back wheels spin they both spin at the same rate and they can't vary their speed. In normal cars one wheel can spin at a slower rate than the other. The locking rear differential allows the driver to drift around corners because any shift in the cars weight, like turning the wheel, will cause it to go off balance and spin around. That is how drifting happens. I hoped you enjoyed the post and as always here is a video for your enjoyment. This is an awesome drifting video enjoy.

Terms of Use

The pages of APlusPhysics.com, Physics in Action podcasts, and other online media at this site are made available as a service to physics students, instructors, and others. Their use is encouraged and is free of charge. Teachers who wish to use materials either in a classroom demonstration format or as part of an interactive activity/lesson are granted permission (and encouraged) to do so. Linking to information on this site is allowed and encouraged, but content from APlusPhysics may not be made available elsewhere on the Internet without the author's written permission.

Copyright Notice

APlusPhysics.com, Silly Beagle Productions and Physics In Action materials are copyright protected and the author restricts their use to online usage through a live internet connection. Any downloading of files to other storage devices (hard drives, web servers, school servers, CDs, etc.) with the exception of Physics In Action podcast episodes is prohibited. The use of images, text and animations in other projects (including non-profit endeavors) is also prohibited. Requests for permission to use such material on other projects may be submitted in writing to info@aplusphysics.com. Licensing of the content of APlusPhysics.com for other uses may be considered in the future.

×
×
  • Create New...