Search the Community
Showing results for tags 'mass'.

Name: AP Physics C: Rotational vs. Linear Review (Mechanics) Category: Rotational Motion Date Added: 20170428 Submitter: Flipping Physics Calculus based review and comparison of the linear and rotational equations which are in the AP Physics C mechanics curriculum. Topics include: displacement, velocity, acceleration, uniformly accelerated motion, uniformly angularly accelerated motion, mass, momentum of inertia, kinetic energy, Newton’s second law, force, torque, power, and momentum. Want Lecture Notes? Content Times: 0:12 Displacement 038 Velocity 1:08 Acceleration 1:33 Uniformly Accelerated Motion 2:15 Uniformly Angularly Accelerated Motion 2:34 Mass 3:19 Kinetic Energy 3:44 Newton’s Second Law 4:18 Force and Torque 5:12 Power 5:45 Momentum Multilingual? Please help translate Flipping Physics videos! AP Physics C Review Website Next Video: AP Physics C: Universal Gravitation Review (Mechanics) Previous Video: AP Physics C: Rotational Dynamics Review  2 of 2 (Mechanics) Please support me on Patreon! Thank you to Sawdog for being my Quality Control individual for this video. AP Physics C: Rotational vs. Linear Review (Mechanics)

We all know Einstein's famous equations E=mc^2. It means that energy and mass are two halves of the same variable, and that a little mass makes an enormous amount of energy. We also know its disastrous effects, as evidenced in the US's infamous Manhattan Project. The first nuclear bomb ever tested was dubbed "The Gadget, " and the test itself was nicknamed the Trinity Test. It was conducted on the morning of July 16, 1945 in the Alamogordo bombing range of New Mexico. The bomb was said to release the energy of about 20 kilotons of TNT, or about 84 terrajoules. Now, if we plug that number into Einstein's equation, we can find exactly how much radioactive plutonium was put towards the actual explosion. Using 3E8 as c and 84E12 as E, we find that the mass of the plutonium reacting was about 9E4Kg. However, I assure you much more plutonium was used to create the Gadget than that. So where did all the rest go? Well, into the massive amount of heat and light created, more than enough to blind people and incinerate standing structures for miles. This conversion seems to be the most powerful force we can today harness, and it truly has awe inspiriing results.

 nuclear weapons
 trinity test

(and 3 more)
Tagged with:

Name: Newton's Laws of Motion in Space: Force, Mass, and Acceleration Category: Dynamics Date Added: 20151007 Submitter: FizziksGuy Uploaded on Apr 18, 2010ESA Science  Newton In Space (Part 2): Newton's Second Law of Motion  Force, Mass And Acceleration. Newton's laws of motion are three physical laws that form the basis for classical mechanics. They have been expressed in several different ways over nearly three centuries.  Please subscribe to Science & Reason: • http://www.youtube.com/Best0fScience • http://www.youtube.com/ScienceMagazine • http://www.youtube.com/FFreeThinker  The laws describe the relationship between the forces acting on a body and the motion of that body. They were first compiled by Sir Isaac Newton in his work "Philosophiæ Naturalis Principia Mathematica", first published on July 5, 1687. Newton used them to explain and investigate the motion of many physical objects and systems. For example, in the third volume of the text, Newton showed that these laws of motion, combined with his law of universal gravitation, explained Kepler's laws of planetary motion.  Newton's Second Law of Motion: A body will accelerate with acceleration proportional to the force and inversely proportional to the mass. Observed from an inertial reference frame, the net force on a particle is equal to the time rate of change of its linear momentum: F = d(mv)/dt. Since by definition the mass of a particle is constant, this law is often stated as, "Force equals mass times acceleration (F = ma): the net force on an object is equal to the mass of the object multiplied by its acceleration." History of the second law Newton's Latin wording for the second law is: "Lex II: Mutationem motus proportionalem esse vi motrici impressae, et fieri secundum lineam rectam qua vis illa imprimitur." This was translated quite closely in Motte's 1729 translation as: "LAW II: The alteration of motion is ever proportional to the motive force impress'd; and is made in the direction of the right line in which that force is impress'd." According to modern ideas of how Newton was using his terminology, this is understood, in modern terms, as an equivalent of: "The change of momentum of a body is proportional to the impulse impressed on the body, and happens along the straight line on which that impulse is impressed." Motte's 1729 translation of Newton's Latin continued with Newton's commentary on the second law of motion, reading: "If a force generates a motion, a double force will generate double the motion, a triple force triple the motion, whether that force be impressed altogether and at once, or gradually and successively. And this motion (being always directed the same way with the generating force), if the body moved before, is added to or subtracted from the former motion, according as they directly conspire with or are directly contrary to each other; or obliquely joined, when they are oblique, so as to produce a new motion compounded from the determination of both." The sense or senses in which Newton used his terminology, and how he understood the second law and intended it to be understood, have been extensively discussed by historians of science, along with the relations between Newton's formulation and modern formulations. Newton's Laws of Motion in Space: Force, Mass, and Acceleration

Name: Everybody Brought Mass to the Party! Category: Dynamics Date Added: 20150928 Submitter: ncharles Published on Sep 25, 2015Find out when mass cancels out from an equation, which it often will in physics problems. Want Lecture Notes? http://www.flippingphysics.com/massp... This is an AP Physics 1 topic. Content Times: 0:05 1st example 1:17 2nd example 1:49 3rd example 2:25 4th example Multilingual? Please help translate Flipping Physics videos! http://www.flippingphysics.com/transl... Previous Video: Does the Book Move? An Introductory Friction Problem http://www.flippingphysics.com/fricti... 1¢/minute: http://www.flippingphysics.com/give.html Everybody Brought Mass to the Party!

Name: Introduction to Newton's 1st Law of Motion Category: Dynamics Date Added: 20150701 Submitter: FizziksGuy Learn about Newtonâ€™s First Law of Motion with two examples shown. Plus, I snuck in some free body diagrams and subtle hints at Newtonâ€™s Second and Third Laws as well. Thank you so much to Mrs. Zeller for being a Flipping Physics Correspondent! Want Lecture Notes? http://www.flippingphysics.com/firstlaw.html Content Times: 0:08 Newtonâ€™s First Law of Motion 0:34 1st Example: Mrs. Zeller presents an object at rest 1:08 What does it mean â€œNo net external force acting on the rockâ€�? 2:20 2nd Example: An object in motion 3:21 What does â€œconstant velocityâ€� mean? 4:00 Also called the Law of Inertia 4:22 The two most common mistakes students make Next Video: Introduction to Newton's 2nd Law with Example Problem http://www.flippingphysics.com/firstlaw.html Previous Video: The Reality of our first Free Body Diagram http://www.flippingphysics.com/realityoffbd.html 1Â¢/minute: http://www.flippingphysics.com/give.html http://commons.wikimedia.org/wiki/File%3AIsaac_Newton%2C_English_School%2C_171520.jpg Attributed to 'English School' (Bonhams) [Public domain], via Wikimedia Commons Introduction to Newton's 1st Law of Motion

 newtons 1st law
 inertia

(and 2 more)
Tagged with:

Video Discussion: Dynamics Review for AP Physics 1
Flipping Physics posted a topic in AP Physics 1/2
Name: Dynamics Review for AP Physics 1 Category: Exam Prep Date Added: 09 March 2015  09:36 AM Submitter: Flipping Physics Short Description: None Provided Review of all of the Dynamics topics covered in the AP Physics 1 curriculum. Content Times: 0:18 Inertial Mass vs. Gravitational Mass 1:14 Newtonâ€™s First Law of Motion 2:20 Newtonâ€™s Second Law of Motion 3:17 Free Body Diagrams 4:29 Force of Gravity or Weight 4:41 Force Normal 5:32 Force of Friction 7:32 Newtonâ€™s Third Law of Motion 8:20 Inclines 9:41 Translational Equilibrium Multilingual? View Video 
Name: Introduction to Newtonâ€™s Second Law of Motion with Example Problem Category: Dynamics Date Added: 21 November 2014  02:38 PM Submitter: Flipping Physics Short Description: None Provided The application of Newtonâ€™s Second Law is when you really understand what the net force equals mass times acceleration where both force and acceleration are vectors really means. Therefore, we introduce Newtonâ€™s Second Law and then do an example problem. Content Times: 0:11 Defining Newtonâ€™s Second Law 1:00 The example problem 1:51 Drawing the Free Body Diagram 2:48 The Force of Gravity 3:42 The net force in the ydirection 5:28 The acceleration of the book in the ydirection 6:38 The net force in the xdirection 7:59 Solving for the dimensions of acceleration 8:54 Constant net force means constant acceleration Multilingual? View Video

 acceleration
 mass

(and 8 more)
Tagged with:

Name: Introduction to Free Body Diagrams or Force Diagrams Category: Dynamics Date Added: 13 November 2014  09:53 AM Submitter: Flipping Physics Short Description: None Provided We define and discuss how to draw Free Body Diagrams which are also called Force Diagrams. In addition we define the force normal and the force applied. Force of friction and center of mass are briefly discussed, however, a much more detailed discussion of each is left for later lessons. Free Body Diagrams are drawn on a level surface and on an incline. Content Times: 0:12 Defining Free Body Diagram or Force Diagram 0:46 Center of mass 1:13 The force of gravity 2:08 The force normal 3:28 Adding a force applied 4:02 The force of friction 4:53 Adding an incline 5:54 The force of friction caused by the incline Multilingual? View Video

Name: Weight and Mass are Not the Same Category: Dynamics Date Added: 10 November 2014  10:20 AM Submitter: Flipping Physics Short Description: None Provided Three major differences between weight and mass are discussed and three media examples of weight in kilograms are presented (and you should know that weight is NOT in kilograms). Content Times: 0:18 Base SI dimensions for weight and mass 1:25 NASA: weight in kilograms 1:38 Michio Kaku: weight in kilograms 1:52 Derek Muller of Veritasium: weight in kilograms 2:30 Weight is a vector and mass is a scalar 2:53 Weight is extrinsic and mass is intrinsic 3:52 Comparing weight and mass on the Earth and the moon 4:45 Space elevators Multilingual? View Video

 acceleration
 vector

(and 7 more)
Tagged with:

Name: Introduction to the Force of Gravity and Gravitational Mass Category: Dynamics Date Added: 05 November 2014  09:47 AM Submitter: Flipping Physics Short Description: None Provided Defining the Force of Gravity or Weight and Gravitational Mass. We also determine the dimensions for force in both Metric and English units. Content Times: 0:11 Defining the Force of Gravity or Weight 1:09 Defining Gravitational Mass 2:12 The direction of the Force of Gravity 2:47 Determining the dimensions for force 4:09 The English unit for force 4:54 Slug vs. Blob Multilingual? View Video

 introduction
 slug

(and 8 more)
Tagged with:

Name: Introduction to Force Category: Dynamics Date Added: 20161027 Submitter: Flipping Physics Defining Force. Including its dimensions, demonstrations of force and mass affecting acceleration, showing that a force is an interaction between two objects and contact vs. field forces. Content Times: 0:11 Defining force 0:56 Demonstrating how force and mass affect acceleration 2:15 Demonstrating why a force doesn’t necessarily cause acceleration 4:09 Force is a vector 4:23 A force is an interaction between to objects 4:56 Contact vs field forces 5:38 The force of gravity is a field force 6:19 Face and snow force interaction Want Lecture Notes? Multilingual? Please help translate Flipping Physics videos! Next Video: Introduction to the Force of Gravity and Gravitational Mass Previous Video: Introduction to Inertia and Inertial Mass 1Â¢/minute Introduction to Force

Name: Introduction to Inertia and Inertial Mass Category: Dynamics Date Added: 27 October 2014  10:02 AM Submitter: Flipping Physics Short Description: None Provided Before you can start learning about Forces and Newtonâ€™s Laws of Motion, you need to understand inertia and mass. This video defines both and more specifically inertial mass. Content Times: 0:13 Defining inertia 1:04 Demonstrating inertia 1:26 Defining inertial mass 2:17 Marcia demonstrates the concept of inertial mass 3:06 Inertial mass not Gravitational mass 4:00 How I filmed a steel sphere moving at a constant velocity Multilingual? View Video

 introduction
 demonstration

(and 4 more)
Tagged with:

Name: Dropping Dictionaries Doesn't Defy Gravity, Duh! Category: Kinematics Date Added: 22 May 2014  04:29 PM Submitter: Flipping Physics Short Description: None Provided Video Proof of the Mass Independence of the Acceleration due to Gravity and a little dancing. Content Times: 0:14 Reviewing the mass independence of freefall acceleration. 0:56 1 book 1:36 What's a boom box? 2:07 All 4 videos together 2:31 We can dance if we want to 3:25 Thank you very much for learning with me today View Video

My friends and I go to Zumba classes three times a week and it is very fun. Like any regular physics student, I am constantly thinking about Mr. Fullerton's lessons during class. As we dance, jump, and move I get to thinking... it must take a lot of energy to move around the way we do. But as we eat healthily and exercise more often, Zumba gets easier and easier... why? Here are some of the equations I will be using to help explain this Zumba Paradox...  KE = (1/2)(mass)(velocity2)  PE = (mass)(g)(height)  Work = Change in Mechanical Energy  Work = Force * Displacement It takes work to move our body in all different sorts of ways. Because work is equal to the change in Mechanical Energy, and both Kinetic Energy and Potential Energy are proportional to the mass of the object, it is reasonable to say that work is also proportional to the mass of the object. In this case, the object is our body. As any athletic trainer will happily tell you, a good workout is one where you do the most work. In our case, we will hold everything else constant besides our mass because we are doing the exact same class every time we work out. Put extremely simply, work is how much you move times how much weight you are moving. So, it is correct to say that as you lose mass you will do less and less work each successive time you go to Zumba class. I want to lose weight at a constant rate, as would most females in Zumba class. Constant weight loss is much better than fluctuating weight loss. So how can I keep my weight loss constant, and overcome this workmass relationship that we discussed earlier? Zumba deals with changes in Kinetic Energy more than other types of fitness training such as weight lifting which deals more with changes in Potential Energy. So for simplicity we will set Work equal to the change in only KE. Here's what we want to happen: C = (1/2)(mass)(velocity2) // With C being a constant positive number that represents an amount of Joules In order for us to keep a constant C, velocity2 has to increase at a rate equal to the rate at which mass decreases. Here's our relationship in equation form: velocity2 = 1/mass // or in exponential form > velocity = mass1/2 So there it is, ladies and gents, if you want to lose weight at a constant rate, you need to increase your intensity a little bit each class as you shed the pounds.
Terms of Use
The pages of APlusPhysics.com, Physics in Action podcasts, and other online media at this site are made available as a service to physics students, instructors, and others. Their use is encouraged and is free of charge. Teachers who wish to use materials either in a classroom demonstration format or as part of an interactive activity/lesson are granted permission (and encouraged) to do so. Linking to information on this site is allowed and encouraged, but content from APlusPhysics may not be made available elsewhere on the Internet without the author's written permission.
Copyright Notice
APlusPhysics.com, Silly Beagle Productions and Physics In Action materials are copyright protected and the author restricts their use to online usage through a live internet connection. Any downloading of files to other storage devices (hard drives, web servers, school servers, CDs, etc.) with the exception of Physics In Action podcast episodes is prohibited. The use of images, text and animations in other projects (including nonprofit endeavors) is also prohibited. Requests for permission to use such material on other projects may be submitted in writing to info@aplusphysics.com. Licensing of the content of APlusPhysics.com for other uses may be considered in the future.