Search the Community
Showing results for tags 'universal gravitational potential energy'.

Name: Force of Gravity and Gravitational Potential Energy Functions from Zero to Infinity (but not beyond) Category: Circular Motion & Gravity Date Added: 20180311 Submitter: Flipping Physics Calculus is used to determine the force of gravity and the gravitational potential energy between an object and a planet, inside and outside the planet. Equations and graphs are determined and discussed. Want Lecture Notes? This is an AP Physics C: Mechanics topic. Content Times: 0:01 Basic universal gravitation equations 1:07 Outside the planet 1:42 Assumptions for inside the planet 3:38 Deriving mass inside r 4:23 Determining the equation for force of gravity inside the planet 5:24 Graphing the force of gravity inside the planet 5:59 Determining the equation for universal gravitational potential energy inside the planet 7:37 Solving for the constant C 8:49 The equation for universal gravitational potential energy inside the planet 9:41 Looking over the graphs Multilingual? Please help translate Flipping Physics videos! Previous Video: Impulse for Two Objects being Attracted to One Another Please support me on Patreon! Thank you to Sawdog, Christopher Becke, and Scott Carter for being my Quality Control Team for this video. Thank you to Youssef Nasr for transcribing the English subtitles of this video. Force of Gravity and Gravitational Potential Energy Functions from Zero to Infinity (but not beyond)

 universal gravitational potential energy
 function
 (and 6 more)

Calculus is used to determine the force of gravity and the gravitational potential energy between an object and a planet, inside and outside the planet. Equations and graphs are determined and discussed. Want Lecture Notes? This is an AP Physics C: Mechanics topic. Content Times: 0:01 Basic universal gravitation equations 1:07 Outside the planet 1:42 Assumptions for inside the planet 3:38 Deriving mass inside r 4:23 Determining the equation for force of gravity inside the planet 5:24 Graphing the force of gravity inside the planet 5:59 Determining the equation for universal gravitational potential energy inside the planet 7:37 Solving for the constant C 8:49 The equation for universal gravitational potential energy inside the planet 9:41 Looking over the graphs Multilingual? Please help translate Flipping Physics videos! Previous Video: Impulse for Two Objects being Attracted to One Another Please support me on Patreon! Thank you to Sawdog, Christopher Becke, and Scott Carter for being my Quality Control Team for this video. Thank you to Youssef Nasr for transcribing the English subtitles of this video.

 universal gravitational potential energy
 function
 (and 6 more)

In a universe devoid of anything else, two identical spheres of mass, m, and radius, R, are released from rest when they have a distance between their centers of mass of X. Find the magnitude of the impulse delivered to each sphere until just before they make contact. Want Lecture Notes? This is an AP Physics 1 topic. Content Times: 0:07 Translating the problem 1:26 Applicable impulse equations 2:13 Conservation of mechanical energy 3:28 Showing a common mistake 4:00 Solving the problem Next Video: Force of Gravity and Gravitational Potential Energy Functions from Zero to Infinity (but not beyond) Multilingual? Please help translate Flipping Physics videos! Previous Video: Mechanical Energy of a Satellite in Circular Orbit Please support me on Patreon! Thank you to Aarti Sangwan, Sawdog, Jonathan Everett, Christopher Becke, and Scott Carter for being my Quality Control Team for this video. Thank you to Youssef Nasr for transcribing the English subtitles of this video.

 universal gravitational potential energy
 kinetic energy
 (and 4 more)

Name: Impulse for Two Objects being Attracted to One Another Category: Circular Motion & Gravity Date Added: 20180311 Submitter: Flipping Physics In a universe devoid of anything else, two identical spheres of mass, m, and radius, R, are released from rest when they have a distance between their centers of mass of X. Find the magnitude of the impulse delivered to each sphere until just before they make contact. Want Lecture Notes? This is an AP Physics 1 topic. Content Times: 0:07 Translating the problem 1:26 Applicable impulse equations 2:13 Conservation of mechanical energy 3:28 Showing a common mistake 4:00 Solving the problem Next Video: Force of Gravity and Gravitational Potential Energy Functions from Zero to Infinity (but not beyond) Multilingual? Please help translate Flipping Physics videos! Previous Video: Mechanical Energy of a Satellite in Circular Orbit Please support me on Patreon! Thank you to Aarti Sangwan, Sawdog, Jonathan Everett, Christopher Becke, and Scott Carter for being my Quality Control Team for this video. Thank you to Youssef Nasr for transcribing the English subtitles of this video. Impulse for Two Objects being Attracted to One Another

 universal gravitational potential energy
 kinetic energy
 (and 4 more)

The mechanical energy of a satellite in circular orbit is solved for in terms of universal gravitational potential energy. And the velocity of the satellite is compared to escape velocity. Want Lecture Notes? This is an AP Physics 1 topic. Content Times: 0:14 Types of mechanical energy of a satellite 1:21 Solving for the velocity of a satellite in circular orbit 2:34 Solving for the mechanical energy of a satellite 3:31 Comparing satellite velocity to escape velocity Next Video: Impulse for Two Objects being Attracted to One Another Multilingual? Please help translate Flipping Physics videos! Previous Video: Deriving Escape Velocity of Planet Earth Please support me on Patreon! Thank you to Jonathan Everett, Christopher Becke, Sawdog, and Scott Carter for being my Quality Control Team for this video. Thank you to Youssef Nasr for transcribing the English subtitles of this video.

 universal gravitational potential energy
 derive
 (and 9 more)

Name: Mechanical Energy of a Satellite in Circular Orbit Category: Circular Motion & Gravity Date Added: 20180304 Submitter: Flipping Physics The mechanical energy of a satellite in circular orbit is solved for in terms of universal gravitational potential energy. And the velocity of the satellite is compared to escape velocity. Want Lecture Notes? This is an AP Physics 1 topic. Content Times: 0:14 Types of mechanical energy of a satellite 1:21 Solving for the velocity of a satellite in circular orbit 2:34 Solving for the mechanical energy of a satellite 3:31 Comparing satellite velocity to escape velocity Next Video: Impulse for Two Objects being Attracted to One Another Multilingual? Please help translate Flipping Physics videos! Previous Video: Deriving Escape Velocity of Planet Earth Please support me on Patreon! Thank you to Jonathan Everett, Christopher Becke, Sawdog, and Scott Carter for being my Quality Control Team for this video. Thank you to Youssef Nasr for transcribing the English subtitles of this video. Mechanical Energy of a Satellite in Circular Orbit

 universal gravitational potential energy
 derive
 (and 9 more)

Escape velocity is defined and illustrated. The escape velocity of planet Earth is derived. Want Lecture Notes? This is an AP Physics 1 topic. Content Times: 0:07 Translating the problem 0:42 Defining escape velocity 1:43 Conservation of mechanical energy 3:22 Initial and final mechanical energies 5:38 The escape velocity of planet Earth 6:19 Relating this to binding energy Next Video: Mechanical Energy of a Satellite in Circular Orbit Multilingual? Please help translate Flipping Physics videos! Previous Video: Deriving the Binding Energy of a Planet Please support me on Patreon! Thank you to Dan Burns, Jonathan Everett, Christopher Becke, Sawdog, and Scott Carter for being my Quality Control Team for this video. Thank you to Youssef Nasr for transcribing the English subtitles of this video.

 potential energy
 universal gravitational potential energy
 (and 4 more)

Name: Deriving Escape Velocity of Planet Earth Category: Circular Motion & Gravity Date Added: 20180225 Submitter: Flipping Physics Escape velocity is defined and illustrated. The escape velocity of planet Earth is derived. Want Lecture Notes? This is an AP Physics 1 topic. Content Times: 0:07 Translating the problem 0:42 Defining escape velocity 1:43 Conservation of mechanical energy 3:22 Initial and final mechanical energies 5:38 The escape velocity of planet Earth 6:19 Relating this to binding energy Next Video: Mechanical Energy of a Satellite in Circular Orbit Multilingual? Please help translate Flipping Physics videos! Previous Video: Deriving the Binding Energy of a Planet Please support me on Patreon! Thank you to Dan Burns, Jonathan Everett, Christopher Becke, Sawdog, and Scott Carter for being my Quality Control Team for this video. Thank you to Youssef Nasr for transcribing the English subtitles of this video. Deriving Escape Velocity of Planet Earth

 potential energy
 universal gravitational potential energy
 (and 4 more)
Terms of Use
The pages of APlusPhysics.com, Physics in Action podcasts, and other online media at this site are made available as a service to physics students, instructors, and others. Their use is encouraged and is free of charge. Teachers who wish to use materials either in a classroom demonstration format or as part of an interactive activity/lesson are granted permission (and encouraged) to do so. Linking to information on this site is allowed and encouraged, but content from APlusPhysics may not be made available elsewhere on the Internet without the author's written permission.
Copyright Notice
APlusPhysics.com, Silly Beagle Productions and Physics In Action materials are copyright protected and the author restricts their use to online usage through a live internet connection. Any downloading of files to other storage devices (hard drives, web servers, school servers, CDs, etc.) with the exception of Physics In Action podcast episodes is prohibited. The use of images, text and animations in other projects (including nonprofit endeavors) is also prohibited. Requests for permission to use such material on other projects may be submitted in writing to info@aplusphysics.com. Licensing of the content of APlusPhysics.com for other uses may be considered in the future.