Search the Community
Showing results for tags 'Introduction'.
Found 71 results

A very basic introduction to the rotational form of Newton’s Second Law of Motion by way of its translational form. Want Lecture Notes? This is an AP Physics 1 Topic. Content Times: 0:15 Newton’s Second Law 0:48 The rotational form 1:59 Using the equation 3:13 In words Next Video: Demonstrating Rotational Inertia (or Moment of Inertia) Multilingual? Please help translate Flipping Physics videos! Previous Video: Net Torque on a Door Problem Please support me on Patreon! Thank you to Scott Carter, Christopher Becke, Jonathan Everett, and Faiaz Rahman for being my Quality Control Team for this video.

 newtons second law
 rotation

(and 4 more)
Tagged with:

Translational and Rotational motion are demonstrated and reviewed. Torque is introduced via the equation and several door opening demonstrations. Moment arm or lever arm is defined and illustrated. Want Lecture Notes? This is an AP Physics 1 topic. Content Times: 0:06 Translational and Rotational Motion 0:58 Defining Torque 1:53 The torque equation 2:59 Door example #1 4:56 Door example #2 6:11 Door example #3 6:58 Defining moment arm 9:18 Torque units Next Video: An Introductory Torque Wrench Problem Multilingual? Please help translate Flipping Physics videos! Previous Video: Moments of Inertia of Rigid Objects with Shape Please support me on Patreon! Thank you to Christopher Becke and Scott Carter for being my Quality Control Team for this video.

 door
 demonstration

(and 6 more)
Tagged with:

Derive the acceleration due to gravity on any planet. Find the acceleration due to gravity on Mt. Everest. And determine how much higher you could jump on the top of Mt. Everest! Want Lecture Notes? This is an AP Physics 1 topic. Content Times: 0:08 Deriving the acceleration due to gravity on any planet 1:54 Finding the acceleration due to gravity on Mt. Everest 3:16 How much higher could you jump on the top of Mt. Everest? Next Video: Altitude of Geosynchronous Orbit (aka Geostationary Orbit) Multilingual? Please help translate Flipping Physics videos! Previous Video: The Force of Gravitational Attraction between the Earth and the Moon Please support me on Patreon! Thank you to Aarti Sangwan and Christopher Becke for being my Quality Control Team for this video. Thank you to Youssef Nasr for transcribing the English subtitles of this video.

Name: Deriving the Acceleration due to Gravity on any Planet and specifically Mt. Everest Category: Circular Motion & Gravity Date Added: 20171211 Submitter: Flipping Physics Derive the acceleration due to gravity on any planet. Find the acceleration due to gravity on Mt. Everest. And determine how much higher you could jump on the top of Mt. Everest! Want Lecture Notes? This is an AP Physics 1 topic. Content Times: 0:08 Deriving the acceleration due to gravity on any planet 1:54 Finding the acceleration due to gravity on Mt. Everest 3:16 How much higher could you jump on the top of Mt. Everest? Next Video: Altitude of Geosynchronous Orbit (aka Geostationary Orbit) Multilingual? Please help translate Flipping Physics videos! Previous Video: The Force of Gravitational Attraction between the Earth and the Moon Please support me on Patreon! Thank you to Aarti Sangwan and Christopher Becke for being my Quality Control Team for this video. Thank you to Youssef Nasr for transcribing the English subtitles of this video. Deriving the Acceleration due to Gravity on any Planet and specifically Mt. Everest

According to NASA, the mass of the Earth is 5.97 x 10^24 kg, the mass of the Moon is 7.3 x 10^22 kg, and the mean distance between the Earth and the Moon is 3.84 x 10^8 m. What is the force of gravitational attraction between the Earth and the Moon? Want Lecture Notes? This is an AP Physics 1 topic. Content Times: 0:07 Translating the problem 0:56 Solving the problem 2:15 Determining how long until the Moon crashes into the Earth 4:00 Determining what is wrong with this calculation Next Video: Deriving the Acceleration due to Gravity on any Planet and specifically Mt. Everest Multilingual? Please help translate Flipping Physics videos! Previous Video: How Much is a Mermaid Attracted to a Doughnut? Please support me on Patreon! Thank you to Aarti Sangwan and Christopher Becke for being my Quality Control Team for this video. Thank you to Youssef Nasr for transcribing the English subtitles of this video.

Name: The Force of Gravitational Attraction between the Earth and the Moon Category: Circular Motion & Gravity Date Added: 20171203 Submitter: Flipping Physics According to NASA, the mass of the Earth is 5.97 x 10^24 kg, the mass of the Moon is 7.3 x 10^22 kg, and the mean distance between the Earth and the Moon is 3.84 x 10^8 m. What is the force of gravitational attraction between the Earth and the Moon? Want Lecture Notes? This is an AP Physics 1 topic. Content Times: 0:07 Translating the problem 0:56 Solving the problem 2:15 Determining how long until the Moon crashes into the Earth 4:00 Determining what is wrong with this calculation Next Video: Deriving the Acceleration due to Gravity on any Planet and specifically Mt. Everest Multilingual? Please help translate Flipping Physics videos! Previous Video: How Much is a Mermaid Attracted to a Doughnut? Please support me on Patreon! Thank you to Aarti Sangwan and Christopher Becke for being my Quality Control Team for this video. Thank you to Youssef Nasr for transcribing the English subtitles of this video. The Force of Gravitational Attraction between the Earth and the Moon

How Much is a Mermaid Attracted to a Doughnut? A practical, everyday example of Newton’s Universal Law of Gravitation. Want Lecture Notes? This is an AP Physics 1 topic. Content Times: 0:08 Translating the problem 0:42 The Force of Gravity Equation 1:47 Solving the problem 2:24 How to do “times ten to the” on your calculator 2:45 Correcting our mistake 3:42 Visualizing these forces 4:14 Why do the objects not move? 5:36 What if the mermaid and donut were the only two objects in the universe? Next Video: The Force of Gravitational Attraction between the Earth and the Moon Multilingual? Please help translate Flipping Physics videos! Previous Video: Newton's Universal Law of Gravitation Introduction (The Big G Equation) Please support me on Patreon! Thank you to Eric York, Scott Carter, Jonathan Everett, and Christopher Becke for being my Quality Control Team for this video. Thank you to Youssef Nasr for transcribing the English subtitles of this video.

Name: How Much is a Mermaid Attracted to a Doughnut? Category: Circular Motion & Gravity Date Added: 20171127 Submitter: Flipping Physics How Much is a Mermaid Attracted to a Doughnut? A practical, everyday example of Newton’s Universal Law of Gravitation. Want Lecture Notes? This is an AP Physics 1 topic. Content Times: 0:08 Translating the problem 0:42 The Force of Gravity Equation 1:47 Solving the problem 2:24 How to do “times ten to the” on your calculator 2:45 Correcting our mistake 3:42 Visualizing these forces 4:14 Why do the objects not move? 5:36 What if the mermaid and donut were the only two objects in the universe? Next Video: The Force of Gravitational Attraction between the Earth and the Moon Multilingual? Please help translate Flipping Physics videos! Previous Video: Newton's Universal Law of Gravitation Introduction (The Big G Equation) Please support me on Patreon! Thank you to Eric York, Scott Carter, Jonathan Everett, and Christopher Becke for being my Quality Control Team for this video. Thank you to Youssef Nasr for transcribing the English subtitles of this video. How Much is a Mermaid Attracted to a Doughnut?

Understanding Newton’s Universal Law of Gravitation. Including a dramatization of The Cavendish Experiment and force visualization via qualitative examples. Want Lecture Notes? This is an AP Physics 1 topic. Content Times: 0:11 Reviewing the standard Force of Gravity or Weight equation 0:56 Newton’s Universal Law of Gravitation 1:48 Defining r 2:47 The Cavendish Experiment 3:52 Visualizing qualitative examples 5:59 When to use the two Force of Gravity equations Next Video: How Much is a Mermaid Attracted to a Doughnut? Thank you to Bronson Hoover of dnbstudios for letting me use his original composition Bèke as Henry Cavendish’s background music. Multilingual? Please help translate Flipping Physics videos! Previous Video: Conical Pendulum Demonstration and Problem Please support me on Patreon! Thank you to Scott Carter, Jonathan Everett, and Christopher Becke for being my Quality Control Team for this video.
 1 comment

 force of gravity
 cavendish
 (and 8 more)

Name: Newton's Universal Law of Gravitation Introduction (The Big G Equation) Category: Circular Motion & Gravity Date Added: 20171120 Submitter: Flipping Physics Understanding Newton’s Universal Law of Gravitation. Including a dramatization of The Cavendish Experiment and force visualization via qualitative examples. Want Lecture Notes? This is an AP Physics 1 topic. Content Times: 0:11 Reviewing the standard Force of Gravity or Weight equation 0:56 Newton’s Universal Law of Gravitation 1:48 Defining r 2:47 The Cavendish Experiment 3:52 Visualizing qualitative examples 5:59 When to use the two Force of Gravity equations Next Video: How Much is a Mermaid Attracted to a Doughnut? Thank you to Bronson Hoover of dnbstudios for letting me use his original composition Bèke as Henry Cavendish’s background music. Multilingual? Please help translate Flipping Physics videos! Previous Video: Conical Pendulum Demonstration and Problem Please support me on Patreon! Thank you to Scott Carter, Jonathan Everett, and Christopher Becke for being my Quality Control Team for this video. Newton's Universal Law of Gravitation Introduction (The Big G Equation)

 force of gravity
 cavendish
 (and 8 more)

A 453 g toy car moving at 1.05 m/s is going over a semicircular hill with a radius of 1.8 m. When the car is at the top of the hill, what is the magnitude of the force from the ground on the car? Want Lecture Notes? This is an AP Physics 1 topic. Content Times: 0:08 Translating the problem 1:49 Drawing the free body diagram 2:43 We need to sum the forces in the indirection 3:22 The “indirection” is positive. The “outdirection” is negative 4:06 Identifying the centripetal force in this problem 4:54 Solving the problem … finally. 6:15 Kit compares the magnitudes of the force normal and force of gravity Thank you to Kit from Gorilla Physics for your help with this video!! Next Video: What is the Maximum Speed of a Car at the Top of a Hill? Multilingual? Please help translate Flipping Physics videos! Previous Video: Centripetal Force Introduction and Demonstration Please support me on Patreon! Thank you to Scott Carter and Christopher Becke for being my Quality Control Team for this video.

 car
 force normal
 (and 8 more)

Name: Introductory Centripetal Force Problem  Car over a Hill Category: Rotational Motion Date Added: 20170918 Submitter: Flipping Physics A 453 g toy car moving at 1.05 m/s is going over a semicircular hill with a radius of 1.8 m. When the car is at the top of the hill, what is the magnitude of the force from the ground on the car? Want Lecture Notes? This is an AP Physics 1 topic. Content Times: 0:08 Translating the problem 1:49 Drawing the free body diagram 2:43 We need to sum the forces in the indirection 3:22 The “indirection” is positive. The “outdirection” is negative 4:06 Identifying the centripetal force in this problem 4:54 Solving the problem … finally. 6:15 Kit compares the magnitudes of the force normal and force of gravity Thank you to Kit from Gorilla Physics for your help with this video!! Next Video: What is the Maximum Speed of a Car at the Top of a Hill? Multilingual? Please help translate Flipping Physics videos! Previous Video: Centripetal Force Introduction and Demonstration Please support me on Patreon! Thank you to Scott Carter and Christopher Becke for being my Quality Control Team for this video. Introductory Centripetal Force Problem  Car over a Hill

 car
 force normal
 (and 8 more)

Why is there a “center seeking” centripetal acceleration? A stepbystep walk through of the answer to this question. Want Lecture Notes? This is an AP Physics 1 topic. Content Times: 0:09 Which mint has the largest angular velocity? 1:14 What do we know about the angular and tangential accelerations of the mints? 2:21 What do we know about the tangential velocity of mint #3? 3:39 Centripetal acceleration introduction 4:44 The centripetal acceleration equations 5:35 The units for centripetal acceleration Next Video: Introductory Centripetal Acceleration Problem  Cylindrical Space Station Multilingual? Please help translate Flipping Physics videos! Previous Video: Demonstrating the Directions of Tangential Velocity and Acceleration Please support me on Patreon! Thank you to Christopher Becke and Aarti Sangwan for being my Quality Control Team for this video.

Name: Centripetal Acceleration Introduction Category: Rotational Motion Date Added: 20170828 Submitter: Flipping Physics Why is there a “center seeking” centripetal acceleration? A stepbystep walk through of the answer to this question. Want Lecture Notes? This is an AP Physics 1 topic. Content Times: 0:09 Which mint has the largest angular velocity? 1:14 What do we know about the angular and tangential accelerations of the mints? 2:21 What do we know about the tangential velocity of mint #3? 3:39 Centripetal acceleration introduction 4:44 The centripetal acceleration equations 5:35 The units for centripetal acceleration Next Video: Introductory Centripetal Acceleration Problem  Cylindrical Space Station Multilingual? Please help translate Flipping Physics videos! Previous Video: Demonstrating the Directions of Tangential Velocity and Acceleration Please support me on Patreon! Thank you to Christopher Becke and Aarti Sangwan for being my Quality Control Team for this video. Centripetal Acceleration Introduction

Angular acceleration is introduced by way of linear acceleration. The units of radians per second squared are discussed. Examples of objects which angular acceleration are shown. Want Lecture Notes? This is an AP Physics 1 topic. Content Times: 0:23 Average angular acceleration 1:02 Angular acceleration units 1:37 Demonstrating objects which have angular acceleration Multilingual? Please help translate Flipping Physics videos! Next Video: Angular Accelerations of a Record Player Previous Video: Introductory Angular Velocity Problem  A Turning Bike Tire Please support me on Patreon! Thank you to Aarti Sangwan, Scott Carter, and Christopher Becke for being my Quality Control team for this video.

 radians per second squared
 revolutions
 (and 8 more)

Name: Angular Acceleration Introduction Category: Rotational Motion Date Added: 20170711 Submitter: Flipping Physics Angular acceleration is introduced by way of linear acceleration. The units of radians per second squared are discussed. Examples of objects which angular acceleration are shown. Want Lecture Notes? This is an AP Physics 1 topic. Content Times: 0:23 Average angular acceleration 1:02 Angular acceleration units 1:37 Demonstrating objects which have angular acceleration Multilingual? Please help translate Flipping Physics videos! Next Video: Angular Accelerations of a Record Player Previous Video: Introductory Angular Velocity Problem  A Turning Bike Tire Please support me on Patreon! Thank you to Aarti Sangwan, Scott Carter, and Christopher Becke for being my Quality Control team for this video. Angular Acceleration Introduction

 radians per second squared
 revolutions
 (and 8 more)

The equation for average angular velocity is presented in relation to the equation for average linear velocity. Radians per second and revolutions per minute are discusses as the units for angular velocity. Objects which have angular velocity are shows. Want Lecture Notes? This is an AP Physics 1 topic. Content Times: 0:09 Average linear velocity 0:22 Average angular velocity 0:53 The units for angular velocity 1:37 Examples of objects with angular velocity Multilingual? Please help translate Flipping Physics videos! Next Video: Introductory Angular Velocity Problem  A Turning Bike Tire Previous Video: Introductory Arc Length Problem  Gum on a Bike Tire Please support me on Patreon! Thank you to Scott Carter and Christopher Becke for being my Quality Control team for this video.

 rotations
 radians per second
 (and 9 more)

Video Discussion: Angular Velocity Introduction
Flipping Physics posted a topic in Video Discussions
Name: Angular Velocity Introduction Category: Rotational Motion Date Added: 20170619 Submitter: Flipping Physics The equation for average angular velocity is presented in relation to the equation for average linear velocity. Radians per second and revolutions per minute are discusses as the units for angular velocity. Objects which have angular velocity are shows. Want Lecture Notes? This is an AP Physics 1 topic. Content Times: 0:09 Average linear velocity 0:22 Average angular velocity 0:53 The units for angular velocity 1:37 Examples of objects with angular velocity Multilingual? Please help translate Flipping Physics videos! Next Video: Introductory Angular Velocity Problem  A Turning Bike Tire Previous Video: Introductory Arc Length Problem  Gum on a Bike Tire Please support me on Patreon! Thank you to Scott Carter and Christopher Becke for being my Quality Control team for this video. Angular Velocity Introduction
 radians per second
 rotations
 (and 9 more)

Name: You Can't Run From Momentum! (a momentum introduction) Category: Momentum and Collisions Date Added: 20170112 Submitter: Flipping Physics Two kids walk through the woods discussing momentum. I mean, who wouldn’t? Okay, fine. It’s a basic introduction to the concept of momentum. Want Lecture Notes? This is an AP Physics 1 Topic. Next Video: Force of Impact Equation Derivation http://www.flippingphysics.com/impactforce.html Multilingual? Please help translate Flipping Physics videos! Previous Video: Instantaneous Power Delivered by a Car Engine  Example Problem Please support me on Patreon! Please consider becoming a Flipping Physics Quality Control helper. You Can't Run From Momentum! (a momentum introduction)

Two kids walk through the woods discussing momentum. I mean, who wouldn’t? Okay, fine. It’s a basic introduction to the concept of momentum. Want Lecture Notes? This is an AP Physics 1 Topic. Next Video: Force of Impact Equation Derivation http://www.flippingphysics.com/impactforce.html Multilingual? Please help translate Flipping Physics videos! Previous Video: Instantaneous Power Delivered by a Car Engine  Example Problem Please support me on Patreon! Please consider becoming a Flipping Physics Quality Control helper.

Mr. Fullerton of APlusPhysics makes a guest appearance as a floating head to help us learn about Elastic Potential Energy. Several examples of objects which store elastic potential energy are shown and one example of stored elastic potential energy is calculated. Want Lecture Notes? This is an AP Physics 1 topic. Content Times: 0:01 Defining Elastic Potential Energy 1:38 The equation for Elastic Potential Energy 2:08 Defining the Spring Constant 3:27 Elastic Potential Energy stored in a rubber band (Mr. Fullerton’s entrance). 3:39 Showing equilibrium position (or rest position). 4:00 Determining the Spring Constant 4:55 Solving for Elastic Potential Energy 5:44 Solving for the units of Elastic Potential Energy 6:29 Can Elastic Potential Energy be negative? Next Video: Introduction to Conservation of Mechanical Energy with Demonstrations Multilingual? Please help translate Flipping Physics videos! Previous Video: Introduction to Gravitational Potential Energy with Zero Line Examples 1¢/minute

Defining Force. Including its dimensions, demonstrations of force and mass affecting acceleration, showing that a force is an interaction between two objects and contact vs. field forces. Content Times: 0:11 Defining force 0:56 Demonstrating how force and mass affect acceleration 2:15 Demonstrating why a force doesn’t necessarily cause acceleration 4:09 Force is a vector 4:23 A force is an interaction between to objects 4:56 Contact vs field forces 5:38 The force of gravity is a field force 6:19 Face and snow force interaction Want Lecture Notes? Multilingual? Please help translate Flipping Physics videos! Next Video: Introduction to the Force of Gravity and Gravitational Mass Previous Video: Introduction to Inertia and Inertial Mass 1Â¢/minute
 6 comments

Demonstrations of and Introduction to Conservation of Momentum Want lecture notes? This is an AP Physics 1 Topic. Content Times: 0:10 Deriving Conservation of Momentum 1:33 Demonstrating Conservation of Momentum 1:53 Analyzing the demonstration 3:29 How a rocket works Next Video: Introductory Conservation of Momentum Explosion Problem Demonstration Multilingual? Please help translate Flipping Physics videos! Previous Video: How to Wear A Helmet  A PSA from Flipping Physics Please support me on Patreon!

 internal force
 net force
 (and 7 more)

Name: Introductory Conservation of Momentum Explosion Problem Demonstration Category: Momentum and Collisions Date Added: 20161013 Submitter: Flipping Physics Now that we have learned about conservation of momentum, let’s apply what we have learned to an “explosion”. Okay, it’s really just the nerdapult launching a ball while on momentum carts. Want lecture notes? This is an AP Physics 1 Topic. Content Times: 0:38 The demonstration 1:16 The known values 2:07 Solving the problem using conservation of momentum 4:00 Measuring the final velocity of the nerdapult 4:39 Determining relative error 5:09 What happens with a less massive projectile? Multilingual? Please help translate Flipping Physics videos! Previous Video: Introduction to Conservation of Momentum with Demonstrations Please support me on Patreon! Introductory Conservation of Momentum Explosion Problem Demonstration

 conservation
 momentum
 (and 10 more)

Now that we have learned about conservation of momentum, let’s apply what we have learned to an “explosion”. Okay, it’s really just the nerdapult launching a ball while on momentum carts. Want lecture notes? This is an AP Physics 1 Topic. Content Times: 0:38 The demonstration 1:16 The known values 2:07 Solving the problem using conservation of momentum 4:00 Measuring the final velocity of the nerdapult 4:39 Determining relative error 5:09 What happens with a less massive projectile? Multilingual? Please help translate Flipping Physics videos! Previous Video: Introduction to Conservation of Momentum with Demonstrations Please support me on Patreon!

 conservation
 momentum
 (and 10 more)
Terms of Use
The pages of APlusPhysics.com, Physics in Action podcasts, and other online media at this site are made available as a service to physics students, instructors, and others. Their use is encouraged and is free of charge. Teachers who wish to use materials either in a classroom demonstration format or as part of an interactive activity/lesson are granted permission (and encouraged) to do so. Linking to information on this site is allowed and encouraged, but content from APlusPhysics may not be made available elsewhere on the Internet without the author's written permission.
Copyright Notice
APlusPhysics.com, Silly Beagle Productions and Physics In Action materials are copyright protected and the author restricts their use to online usage through a live internet connection. Any downloading of files to other storage devices (hard drives, web servers, school servers, CDs, etc.) with the exception of Physics In Action podcast episodes is prohibited. The use of images, text and animations in other projects (including nonprofit endeavors) is also prohibited. Requests for permission to use such material on other projects may be submitted in writing to info@aplusphysics.com. Licensing of the content of APlusPhysics.com for other uses may be considered in the future.