Search the Community
Showing results for tags 'component'.
Found 16 results

Understand the forces acting on an object on an incline by analyzing the forces on a “floating block”. Want Lecture Notes? This is an AP Physics 1 topic. Content Times: 0:28 Finding the incline angle 1:17 Drawing the Free Body Diagram 2:26 Summing the forces in the perpendicular direction 3:49 Summing the forces in the parallel direction 5:04 Determining masses for the “Magic Trick” 6:11 Adding pulleys, strings and mass 7:34 Floating the block 8:18 Analyzing the forces on the floating block Next Video: Introductory Static Friction on an Incline Problem Multilingual? Please help translate Flipping Physics videos! Previous Video: Breaking the Force of Gravity into its Components on an Incline Thanks to Nic3_one and Cyril Laurier for their Fire Sounds: Fire in a can! » constant spray fire 1 by Nic3_one Earth+Wind+Fire+Water » Fire.wav by Cyril Laurier 1¢/minute

 force
 perpendicular
 (and 8 more)

Resolve the force of gravity into its parallel and perpendicular components so you can sum the forces. Want Lecture Notes? This is an AP Physics 1 topic. Content Times: 0:12 Drawing the Free Body Diagram 1:04 Introducing the parallel and perpendicular directions 2:19 Drawing the components of the force of gravity 2:49 Finding the angle used to resolve the force of gravity into its components 4:33 Solving for the force of gravity parallel 5:15 Solving for the force of gravity perpendicular 5:53 Redrawing the Free Body Diagram Next Video: Physics "Magic Trick" on an Incline Multilingual? Please help translate Flipping Physics videos! Previous Video: Determining the Static Coefficient of Friction between Tires and Snow 1¢/minute

Name: Physics "Magic Trick" on an Incline Category: Dynamics Date Added: 20160606 Submitter: Flipping Physics Understand the forces acting on an object on an incline by analyzing the forces on a “floating block”. Want Lecture Notes? This is an AP Physics 1 topic. Content Times: 0:28 Finding the incline angle 1:17 Drawing the Free Body Diagram 2:26 Summing the forces in the perpendicular direction 3:49 Summing the forces in the parallel direction 5:04 Determining masses for the “Magic Trick” 6:11 Adding pulleys, strings and mass 7:34 Floating the block 8:18 Analyzing the forces on the floating block Next Video: Introductory Static Friction on an Incline Problem Multilingual? Please help translate Flipping Physics videos! Previous Video: Breaking the Force of Gravity into its Components on an Incline Thanks to Nic3_one and Cyril Laurier for their Fire Sounds: Fire in a can! » constant spray fire 1 by Nic3_one Earth+Wind+Fire+Water » Fire.wav by Cyril Laurier 1¢/minute Physics "Magic Trick" on an Incline

 resolve
 force diagram
 (and 8 more)

Name: Breaking the Force of Gravity into its Components on an Incline Category: Dynamics Date Added: 20151016 Submitter: Flipping Physics Resolve the force of gravity into its parallel and perpendicular components so you can sum the forces. Want Lecture Notes? This is an AP Physics 1 topic. Content Times: 0:12 Drawing the Free Body Diagram 1:04 Introducing the parallel and perpendicular directions 2:19 Drawing the components of the force of gravity 2:49 Finding the angle used to resolve the force of gravity into its components 4:33 Solving for the force of gravity parallel 5:15 Solving for the force of gravity perpendicular 5:53 Redrawing the Free Body Diagram Next Video: Physics "Magic Trick" on an Incline Multilingual? Please help translate Flipping Physics videos! Previous Video: Determining the Static Coefficient of Friction between Tires and Snow 1¢/minute Breaking the Force of Gravity into its Components on an Incline

 incline
 free body diagram
 (and 8 more)

Summing the forces is nothing new, it is vector addition. This video compares summing the forces to graphical vector addition. This video builds off the previous video "[url="http://www.flippingphysics.com/threeforceexample.html"]A Three Force Example of Newton's 2nd Law with Components[/url]â€ which you should watch first. Content Times: 0:31 The first example 0:59 The second example 1:20 The third example 1:40 The fourth example 1:58 Using a data table 2:26 Reviewing all the examples visually Multilingual? [url="http://www.flippingphysics.com/translate.html"]Please help translate Flipping Physics videos[/url]! Want [url="http://www.flippingphysics.com/forcevectoraddition.html"]Lecture Notes[/url]? Next Video: [url="http://www.flippingphysics.com/secondlawfriction.html"]Using Newton's Second Law to find the Force of Friction[/url] [url="http://www.flippingphysics.com/give.html"]1Â¢/minute[/url] A giant thank you to [url="http://www.franceslukeaccord.com"]Frances Luke Accord[/url] for letting me use their song â€œIn The Waterâ€ from their album â€œKandoteâ€. They make wonderful music; you should really check them out.

Finding the net force caused by three brothers fighting over a stuffed turtle. We break one vector in to components and find the components of the net force in order to solve for the net force. Content Times: 0:16 My 3 brothers 0:29 The problem 1:13 The givens 1:55 Drawing the Free Body Diagram 2:39 Breaking the Force of Chris in to its components 4:09 Redrawing the Free Body Diagram 4:54 Finding the components of the net force 5:47 Finding the net force 7:10 Finding the direction of the net force 8:02 Shouldnâ€™t Turtle accelerate? 8:39 Directing my brothers Multilingual? [url="http://www.flippingphysics.com/translate.html"]Please help translate Flipping Physics videos![/url] Want [url="http://www.flippingphysics.com/threeforceexample.html"]Lecture Notes?[/url] Next Video: [url="http://www.flippingphysics.com/forcevectoraddition.html"]Summing the Forces is Vector Addition[/url] Previous Video: [url="http://www.flippingphysics.com/forcevstime.html"]Force vs. Time on a Dynamics Cart[/url] [url="http://www.flippingphysics.com/give.html"]1Â¢/minute[/url] Thank you very much Ken, Jim and Chris, my three brothers, for agreeing to be in this video!

Name: Summing the Forces is Vector Addition Category: Dynamics Date Added: 06 January 2015  01:59 PM Submitter: Flipping Physics Short Description: None Provided Summing the forces is nothing new, it is vector addition. This video compares summing the forces to graphical vector addition. This video builds off the previous video "View Video

Name: A Three Force Example of Newton's 2nd Law with Components Category: Dynamics Date Added: 16 December 2014  02:17 PM Submitter: Flipping Physics Short Description: None Provided Finding the net force caused by three brothers fighting over a stuffed turtle. We break one vector in to components and find the components of the net force in order to solve for the net force. Content Times: 0:16 My 3 brothers 0:29 The problem 1:13 The givens 1:55 Drawing the Free Body Diagram 2:39 Breaking the Force of Chris in to its components 4:09 Redrawing the Free Body Diagram 4:54 Finding the components of the net force 5:47 Finding the net force 7:10 Finding the direction of the net force 8:02 Shouldnâ€™t Turtle accelerate? 8:39 Directing my brothers Multilingual? View Video

It is not obvious in all relative motion problems how to draw the vector diagrams. Sometimes the velocity of the object with respect to the Earth is not the hypotenuse of the velocity vector addition triangle. Here we address how to handle a problem like that. Content Times: 0:15 Reading the problem 0:40 Translating the problem 1:52 Visualizing the problem 2:17 Drawing the vector diagram 3:33 Rearranging the vector equation 4:40 Redrawing the vector diagram 5:30 The Earth subscript drops out of the equation 5:51 Solving part (a): solving for theta 6:40 Solving part (b ): solving for the speed of the car relative to the Earth 7:48 Understanding the answer to part (b ) Want [url="http://www.flippingphysics.com/relativemotionangle.html"]Lecture Notes[/url]? Multilingual? [url="http://www.flippingphysics.com/translate.html"]Please help translate Flipping Physics videos![/url] Next Video: [url="http://www.flippingphysics.com/inertialmass.html"]Introduction to Inertia and Inertial Mass[/url] Previous video: [url="http://www.flippingphysics.com/relativemotioncomponents.html"]An introductory Relative Motion Problem with Vector Components[/url] [url="http://www.flippingphysics.com/give.html"]1Â¢/minute[/url] "[url="http://commons.wikimedia.org/wiki/File:Nombre_de_los_vientos.svg#mediaviewer/File:Nombre_de_los_vientos.svg"]Nombre de los vientos[/url]". Licensed under Public domain via Wikimedia Commons

Name: Relative Motion Problem: Solving for the angle of the moving object Category: Kinematics Date Added: 07 October 2014  03:02 PM Submitter: Flipping Physics Short Description: None Provided It is not obvious in all relative motion problems how to draw the vector diagrams. Sometimes the velocity of the object with respect to the Earth is not the hypotenuse of the velocity vector addition triangle. Here we address how to handle a problem like that. Content Times: 0:15 Reading the problem 0:40 Translating the problem 1:52 Visualizing the problem 2:17 Drawing the vector diagram 3:33 Rearranging the vector equation 4:40 Redrawing the vector diagram 5:30 The Earth subscript drops out of the equation 5:51 Solving part (a): solving for theta 6:40 Solving part (b ): solving for the speed of the car relative to the Earth 7:48 Understanding the answer to part (b ) Want View Video

This time in our projectile motion problem, we know the displacement in the ydireciton and we are solving for the displacement in the xdireciton. We could you use the quadratic formula and I even show you how, however, I also show you the way I recommend doing it which avoids the quadratic formula. Content Times: 0:14 Reading the problem 0:55 Comparing the previous projectile motion problem to the current one 1:16 Breaking the initial velocity in to its components 1:44 Listing the givens 2:27 Beginning to solve the problem in the ydirection 3:08 The Quadratic Formula! 5:49 How to solve it without using the quadratic formula. Solve for Velocity Final in the ydirection first 6:59 And then solve for the change in time 8:12 Solving for the displacement in the xdirection 9:01 Showing that it works 9:43 The Review Want [url="http://www.flippingphysics.com/anotherprojectilemotion.html"]Lecture Notes[/url]? Next Video: Understanding the [url="http://www.flippingphysics.com/rangeequation.html"]Range Equation[/url] of Projectile Motion Previous Projectile Motion Problem: [url="http://www.flippingphysics.com/nerdapult.html"]NerdAPult[/url]  An Introductory Projectile Motion Problem Want a NerdAPult? You can purchase one at: [url="http://marshmallowcatapults.com"]http://marshmallowcatapults.com[/url] [url="http://www.flippingphysics.com/give.html"]1¢/minute[/url]

Name: NerdAPult #2  Another Projectile Motion Problem Category: Kinematics Date Added: 03 June 2014  12:29 PM Submitter: Flipping Physics Short Description: None Provided This time in our projectile motion problem, we know the displacement in the ydireciton and we are solving for the displacement in the xdireciton. We could you use the quadratic formula and I even show you how, however, I also show you the way I recommend doing it which avoids the quadratic formula. Content Times: 0:14 Reading the problem 0:55 Comparing the previous projectile motion problem to the current one 1:16 Breaking the initial velocity in to its components 1:44 Listing the givens 2:27 Beginning to solve the problem in the ydirection 3:08 The Quadratic Formula! 5:49 How to solve it without using the quadratic formula. Solve for Velocity Final in the ydirection first 6:59 And then solve for the change in time 8:12 Solving for the displacement in the xdirection 9:01 Showing that it works 9:43 The Review Want View Video

Now that we have dropped the ball into the bucket, we can determine the final velocity of the ball right before it strikes the bucket. Don't forget that velocity is a vector and has both magnitude and direction. Yep, component vector review! Content Times: 0:34 Finding the final velocity in the y direction. 1:52 We need to find the hypotenuse! 2:28 Finding the final velocity in the x direction. 2:57 Finding the magnitude of the final velocity. 4:06 Finding the direction of the final velocity. 5:08 The number answer. 5:52 Visualizing the answer. 6:28 Why is the ball always right below mr.p's hand? 7:07 Doesn't the ball travel farther than mr.p's hand? 7:33 The Review. [url="http://www.flippingphysics.com/projectilemotionproblempart2of2.html"]Want Lecture Notes?[/url] Next Video: [url="http://www.flippingphysics.com/howmany.html"]How Many Attempts did it Really Take?[/url] [url="http://www.flippingphysics.com/theeulermethod.html"]A Brief Look at the Force of Drag using Numerical Modeling (or The Euler Method)[/url] Previous Video: [url="http://www.flippingphysics.com/projectilemotionproblempart1of2.html"](part 1 of 2) An Introductory Projectile Motion Problem with an Initial Horizontal Velocity[/url] [url="http://www.flippingphysics.com/give.html"]1¢/minute[/url]
 2 comments

 projectile
 motion

(and 7 more)
Tagged with:

Name: (Part 2 of 2) An Introductory Projectile Motion Problem with an Initial Horizontal Velocity Category: Kinematics Date Added: 22 May 2014  04:57 PM Submitter: Flipping Physics Short Description: None Provided Now that we have dropped the ball into the bucket, we can determine the final velocity of the ball right before it strikes the bucket. Don't forget that velocity is a vector and has both magnitude and direction. Yep, component vector review! Content Times: 0:34 Finding the final velocity in the y direction. 1:52 We need to find the hypotenuse! 2:28 Finding the final velocity in the x direction. 2:57 Finding the magnitude of the final velocity. 4:06 Finding the direction of the final velocity. 5:08 The number answer. 5:52 Visualizing the answer. 6:28 Why is the ball always right below mr.p's hand? 7:07 Doesn't the ball travel farther than mr.p's hand? 7:33 The Review. View Video

 projectile
 motion

(and 7 more)
Tagged with:

A simple, introductory vector addition problem that combines the concepts of vectors, cardinal directions, tiptotail vector addition and component vectors. Content Times: 0:14 Reading and understanding the problem. 1:25 Drawing the Vector Diagram. 2:28 A common mistake about where to place the arrowhead on the Resultant Vector. 3:39 This is NOT a Vector Diagram! 4:34 How NOT to solve the problem. 5:12 Breaking vector B in to its component in the y direction. 6:02 Breaking vector B in to its component in the x direction. 6:52 Redrawing the Vector Diagram using the components of vector B. 7:30 Finding the direction of our Resultant Vector. 8:35 Finding the magnitude of our Resultant Vector. 9:47 Summarizing the entire problem in 27 seconds. 10:19 The review. [url="http://www.flippingphysics.com/introductoryvectoradditionproblem.html"]Want Lecture Notes?[/url] Next Video: [url="http://www.flippingphysics.com/datatable.html"]Using a Data Table to Make Vector Addition Problems Easier[/url] Previous Video: [url="http://www.flippingphysics.com/vectorcomponents.html"]Introduction to Vector Components[/url] [url="http://www.flippingphysics.com/give.html"]1¢/minute[/url]
 3 comments

 introductory
 vector

(and 6 more)
Tagged with:

Name: Introductory Vector Addition Problem using Component Vectors Category: Kinematics Date Added: 22 May 2014  04:40 PM Submitter: Flipping Physics Short Description: None Provided A simple, introductory vector addition problem that combines the concepts of vectors, cardinal directions, tiptotail vector addition and component vectors. Content Times: 0:14 Reading and understanding the problem. 1:25 Drawing the Vector Diagram. 2:28 A common mistake about where to place the arrowhead on the Resultant Vector. 3:39 This is NOT a Vector Diagram! 4:34 How NOT to solve the problem. 5:12 Breaking vector B in to its component in the y direction. 6:02 Breaking vector B in to its component in the x direction. 6:52 Redrawing the Vector Diagram using the components of vector B. 7:30 Finding the direction of our Resultant Vector. 8:35 Finding the magnitude of our Resultant Vector. 9:47 Summarizing the entire problem in 27 seconds. 10:19 The review. View Video

 introductory
 vector

(and 6 more)
Tagged with:
Terms of Use
The pages of APlusPhysics.com, Physics in Action podcasts, and other online media at this site are made available as a service to physics students, instructors, and others. Their use is encouraged and is free of charge. Teachers who wish to use materials either in a classroom demonstration format or as part of an interactive activity/lesson are granted permission (and encouraged) to do so. Linking to information on this site is allowed and encouraged, but content from APlusPhysics may not be made available elsewhere on the Internet without the author's written permission.
Copyright Notice
APlusPhysics.com, Silly Beagle Productions and Physics In Action materials are copyright protected and the author restricts their use to online usage through a live internet connection. Any downloading of files to other storage devices (hard drives, web servers, school servers, CDs, etc.) with the exception of Physics In Action podcast episodes is prohibited. The use of images, text and animations in other projects (including nonprofit endeavors) is also prohibited. Requests for permission to use such material on other projects may be submitted in writing to info@aplusphysics.com. Licensing of the content of APlusPhysics.com for other uses may be considered in the future.