Search the Community
Showing results for tags 'derive'.
-
The mechanical energy of a satellite in circular orbit is solved for in terms of universal gravitational potential energy. And the velocity of the satellite is compared to escape velocity. Want Lecture Notes? This is an AP Physics 1 topic. Content Times: 0:14 Types of mechanical energy of a satellite 1:21 Solving for the velocity of a satellite in circular orbit 2:34 Solving for the mechanical energy of a satellite 3:31 Comparing satellite velocity to escape velocity Next Video: Impulse for Two Objects being Attracted to One Another Multilingual? Please help translate
-
- universal gravitational potential energy
- derive
- (and 9 more)
-
Name: Mechanical Energy of a Satellite in Circular Orbit Category: Circular Motion & Gravity Date Added: 2018-03-04 Submitter: Flipping Physics The mechanical energy of a satellite in circular orbit is solved for in terms of universal gravitational potential energy. And the velocity of the satellite is compared to escape velocity. Want Lecture Notes? This is an AP Physics 1 topic. Content Times: 0:14 Types of mechanical energy of a satellite 1:21 Solving for the velocity of a satellite in circular orbit 2:34 Solving for the mechanical energy of a satellite 3:31 Comparing
-
- universal gravitational potential energy
- derive
- (and 9 more)
-
Escape velocity is defined and illustrated. The escape velocity of planet Earth is derived. Want Lecture Notes? This is an AP Physics 1 topic. Content Times: 0:07 Translating the problem 0:42 Defining escape velocity 1:43 Conservation of mechanical energy 3:22 Initial and final mechanical energies 5:38 The escape velocity of planet Earth 6:19 Relating this to binding energy Next Video: Mechanical Energy of a Satellite in Circular Orbit Multilingual? Please help translate Flipping Physics videos! Previous Video: Deriving the Binding Energy of a Planet Plea
-
- potential energy
- universal gravitational potential energy
- (and 4 more)
-
Name: Deriving Escape Velocity of Planet Earth Category: Circular Motion & Gravity Date Added: 2018-02-25 Submitter: Flipping Physics Escape velocity is defined and illustrated. The escape velocity of planet Earth is derived. Want Lecture Notes? This is an AP Physics 1 topic. Content Times: 0:07 Translating the problem 0:42 Defining escape velocity 1:43 Conservation of mechanical energy 3:22 Initial and final mechanical energies 5:38 The escape velocity of planet Earth 6:19 Relating this to binding energy Next Video: Mechanical Energy of a Satellite in Circular O
-
- potential energy
- universal gravitational potential energy
- (and 4 more)
-
Name: AP Physics C: Equations to Memorize (Mechanics) Category: Vector Math Date Added: 2017-04-30 Submitter: Flipping Physics Calculus based review of equations I suggest you memorize for the AP Physics C: Mechanics Exam. Please realize I abhor memorization, however, there are a few equations which I do recommend you memorize. I also list equations NOT to memorize and ones which I suggest you know how to derive. Also a note about Moments of Inertia and the AP Exam. For the calculus based AP Physics C mechanics exam. Want Lecture Notes? Content Times: 0:22 Equations to Memorize 2
-
Calculus based review of equations I suggest you memorize for the AP Physics C: Mechanics Exam. Please realize I abhor memorization, however, there are a few equations which I do recommend you memorize. I also list equations NOT to memorize and ones which I suggest you know how to derive. Also a note about Moments of Inertia and the AP Exam. For the calculus based AP Physics C mechanics exam. Want Lecture Notes? Content Times: 0:22 Equations to Memorize 2:06 Derivative as an Integral Example 6:52 Equations NOT to memorize 8:10 Equations to know how to derive 10:14 Moments of I
-
Learn how to derive the Range of Projectile. The Horizontal Range of a Projectile is defined as the horizontal displacement of a projectile when the displacement of the projectile in the y-direction is zero. Content Times: 0:12 Defining Range 0:32 Resolving the initial velocity in to it's components 1:49 Listing our known values 2:49 Solving for range in terms of change in time 3:30 Solving for the change in time in the y-direciton 5:18 Combining two equations 6:03 The Sine Double Angle Formula 6:53 The Review Want [url="http://www.flippingphysics.com/deriving-the-range-equation.
- 2 comments
-
- horizontal
- displacement
-
(and 5 more)
Tagged with:
-
Name: Deriving the Range Equation of Projectile Motion Category: Kinematics Date Added: 16 June 2014 - 02:16 PM Submitter: Flipping Physics Short Description: None Provided Learn how to derive the Range of Projectile. The Horizontal Range of a Projectile is defined as the horizontal displacement of a projectile when the displacement of the projectile in the y-direction is zero. Content Times: 0:12 Defining Range 0:32 Resolving the initial velocity in to it's components 1:49 Listing our known values 2:49 Solving for range in terms of change in time 3:30 Solving for the change in
- 1 reply
-
- horizontal
- displacement
-
(and 5 more)
Tagged with:
Footer title
This content can be configured within your theme settings in your ACP. You can add any HTML including images, paragraphs and lists.
Footer title
This content can be configured within your theme settings in your ACP. You can add any HTML including images, paragraphs and lists.
Footer title
This content can be configured within your theme settings in your ACP. You can add any HTML including images, paragraphs and lists.