Search the Community
Showing results for tags 'elastic'.

A 28.8 g yellow air hockey disc elastically strikes a 26.9 g stationary red air hockey disc. If the velocity of the yellow disc before the collision is 33.6 cm/s in the x direction and after the collision it is 10.7 cm/s at an angle 63.4° S of E, what is the velocity of the red disc after the collision? This is an AP Physics 1 topic. Want Lecture Notes? Content Times: 0:12 The problem 1:49 Breaking the initial velocity of disc 1 into its components 3:06 Conservation of momentum in the xdirection 5:24 Conservation of momentum in the ydirection 6:26 Solving for the final velocit
 1 comment

 kinetic energy
 elastic

(and 7 more)
Tagged with:

Calculus based review of conservation of momentum, the momentum version of Newton’s second law, the ImpulseMomentum Theorem, impulse approximation, impact force, elastic, inelastic and perfectly inelastic collisions, position, velocity and acceleration of the center of mass of a system of particles, center of mass of a rigid object with shape, and volumetric, surface and linear mass densities. For the calculus based AP Physics C mechanics exam. Want Lecture Notes? Content Times: 0:11 Momentum 0:38 Momentum and Newton’s Second Law 1:44 Conservation of Momentum 2:35 ImpulseMomen

 linear
 conservation of momentum
 (and 17 more)

Name: AP Physics C: Momentum, Impulse, Collisions and Center of Mass Review (Mechanics) Category: Momentum and Collisions Date Added: 20170428 Submitter: Flipping Physics Calculus based review of conservation of momentum, the momentum version of Newton’s second law, the ImpulseMomentum Theorem, impulse approximation, impact force, elastic, inelastic and perfectly inelastic collisions, position, velocity and acceleration of the center of mass of a system of particles, center of mass of a rigid object with shape, and volumetric, surface and linear mass densities. For the calculus based AP

 linear
 conservation of momentum
 (and 17 more)

By the time students learn about all the equations for mechanical energy, momentum, impulse and impact force, they often start to confuse the equations with one another. This is a straightforward, simple look at all of those equations and when to use them. This is an AP Physics 1 Topic. Want Lecture Notes? Content Times: 0:14 Tacky Sweater Day! 0:22 Conservation of Mechanical Energy 0:54 Work due to Friction equals Change in Mechanical Energy 1:30 Net Work equals change in Kinetic Energy 3:01 Conservation of Momentum does NOT require the work due to friction to be zero 3:28

 impact force
 impulse

(and 8 more)
Tagged with:

Name: 2D Conservation of Momentum Example using Air Hockey Discs Category: Momentum and Collisions Date Added: 20170521 Submitter: Flipping Physics A 28.8 g yellow air hockey disc elastically strikes a 26.9 g stationary red air hockey disc. If the velocity of the yellow disc before the collision is 33.6 cm/s in the x direction and after the collision it is 10.7 cm/s at an angle 63.4° S of E, what is the velocity of the red disc after the collision? This is an AP Physics 1 topic. Want Lecture Notes? Content Times: 0:12 The problem 1:49 Breaking the initial velocity of disc 1 into

 kinetic energy
 elastic

(and 7 more)
Tagged with:

Name: Review of Mechanical Energy and Momentum Equations and When To Use Them! Category: Momentum and Collisions Date Added: 20170216 Submitter: Flipping Physics By the time students learn about all the equations for mechanical energy, momentum, impulse and impact force, they often start to confuse the equations with one another. This is a straightforward, simple look at all of those equations and when to use them. This is an AP Physics 1 Topic. Want Lecture Notes? Content Times: 0:14 Tacky Sweater Day! 0:22 Conservation of Mechanical Energy 0:54 Work due to Friction equals C

 impact force
 impulse

(and 8 more)
Tagged with:

An elastic collision is demonstrated and analyzed. Want lecture notes? This is an AP Physics 1 Topic. A big thank you to Mr. Becke for being a guest in today’s video! Content Times: 0:25 Reading and translating the problem 1:17 The demonstration 1:52 Solving for velocity final of cart 2 3:46 Measuring the velocity final of cart 2 4:25 Checking if kinetic energy is conserved 6:22 We should have converted to meters per second Next Video: Demonstrating Impulse is Area Under the Curve Multilingual? Please help translate Flipping Physics videos! Previous Video: Int

Name: Introductory Elastic Collision Problem Demonstration Category: Momentum and Collisions Date Added: 20161124 Submitter: Flipping Physics An elastic collision is demonstrated and analyzed. Want lecture notes? This is an AP Physics 1 Topic. A big thank you to Mr. Becke for being a guest in today’s video! Content Times: 0:25 Reading and translating the problem 1:17 The demonstration 1:52 Solving for velocity final of cart 2 3:46 Measuring the velocity final of cart 2 4:25 Checking if kinetic energy is conserved 6:22 We should have converted to meters per second N

Learn about Elastic, Inelastic and Perfectly Inelastic collisions via a demonstration Want lecture notes? This is an AP Physics 1 Topic. Content Times: 0:15 The charities 1:05 Elastic collisions 2:09 Inelastic collisions 3:29 Perfectly Inelastic collisions 4:13 Demonstration #1 5:28 Demonstration #2 Next Video: Introductory Perfectly Inelastic Collision Problem Demonstration Multilingual? Please help translate Flipping Physics videos! Previous Video: Introductory Conservation of Momentum Explosion Problem Demonstration The Charities: Children With Hair

Mr. Fullerton of APlusPhysics makes a guest appearance as a floating head to help us learn about Elastic Potential Energy. Several examples of objects which store elastic potential energy are shown and one example of stored elastic potential energy is calculated. Want Lecture Notes? This is an AP Physics 1 topic. Content Times: 0:01 Defining Elastic Potential Energy 1:38 The equation for Elastic Potential Energy 2:08 Defining the Spring Constant 3:27 Elastic Potential Energy stored in a rubber band (Mr. Fullerton’s entrance). 3:39 Showing equilibrium p

Name: Introduction to Elastic and Inelastic Collisions Category: Momentum and Collisions Date Added: 20161110 Submitter: Flipping Physics Learn about Elastic, Inelastic and Perfectly Inelastic collisions via a demonstration Want lecture notes? This is an AP Physics 1 Topic. Content Times: 0:15 The charities 1:05 Elastic collisions 2:09 Inelastic collisions 3:29 Perfectly Inelastic collisions 4:13 Demonstration #1 5:28 Demonstration #2 Next Video: Introductory Perfectly Inelastic Collision Problem Demonstration Multilingual? Please help translate Flipping Phy

 inelastic
 demonstration
 (and 6 more)

Sing and learn about Work and Mechanical Energy with Bo! Want Lyrics? This is an AP Physics 1 topic. Multilingual? Please help translate Flipping Physics videos! Next Video: Introduction to Mechanical Energy with Friction Previous Video: Conservation of Energy Problem with Friction, an Incline and a Spring by Billy Hear "The Energy Song" on Soundcloud. 1¢/minute

Name: The Energy Song by Bo Category: Work, Energy, Power Date Added: 20160129 Submitter: Flipping Physics Sing and learn about Work and Mechanical Energy with Bo! Want Lyrics? This is an AP Physics 1 topic. Multilingual? Please help translate Flipping Physics videos! Next Video: Introduction to Mechanical Energy with Friction Previous Video: Conservation of Energy Problem with Friction, an Incline and a Spring by Billy Hear "The Energy Song" on Soundcloud. 1¢/minute The Energy Song by Bo

 energy
 mechanical

(and 7 more)
Tagged with:

Billy helps you review Conservation of Mechanical Energy, springs, inclines, and uniformly accelerated motion all in one example problem. Want Lecture Notes? This is an AP Physics 1 topic. Content Times: 0:10 The problem 0:38 Listing the known values 1:40 Using Conservation of Mechanical Energy 2:56 Canceling out the Mechanical Energies which are not there 4:18 Drawing the Free Body Diagram 4:52 Summing the forces in the perpendicular direction 5:26 Summing the forces in the parallel direction 6:59 Using Uniformly Accelerated Motion 7:56 Finding the maximum height

 spring constant
 spring
 (and 9 more)

Learn how to use the Conservation of Mechanical Energy equation by solving a trebuchet problem. Want Lecture Notes? This is an AP Physics 1 topic. Content Times: 0:08 The problem 1:08 Why mechanical energy is conserved 1:37 Setting the zero line and initial and final points 2:32 The three types of mechanical energy 3:55 Canceling mechanical energies from the equation 4:54 Solving the equation 6:18 It’s final speed not final velocity 6:51 Why we can’t use the projectile motion equations 7:43 Do we really have to write all that down?

 problem
 demonstration
 (and 8 more)

Name: Conservation of Energy Problem with Friction, an Incline and a Spring by Billy Category: Work, Energy, Power Date Added: 20160114 Submitter: Flipping Physics Billy helps you review Conservation of Mechanical Energy, springs, inclines, and uniformly accelerated motion all in one example problem. Want Lecture Notes? This is an AP Physics 1 topic. Content Times: 0:10 The problem 0:38 Listing the known values 1:40 Using Conservation of Mechanical Energy 2:56 Canceling out the Mechanical Energies which are not there 4:18 Drawing the Free Body Diagram 4:52 Summing th

 conservation
 mechanical energy
 (and 9 more)

Ian Terry, winner of Big Brother 14, makes a special appearance to help us learn about Conservation of Mechanical Energy. See several demonstrations and understand when mechanical energy is conserved. Want Lecture Notes? This is an AP Physics 1 topic. Content Times: 0:01 Reviewing the three different types of mechanical energy 0:23 Mr. Terry drops an object for our first demonstration 0:58 Calculating Kinetic Energy and Gravitational Potential Energy 2:53 Mechanical energy data table 3:37 Conservation of mechanical energy graph 5:10 When is mechanical

 kinetic energy
 potential energy
 (and 7 more)

Name: Introductory Conservation of Mechanical Energy Problem using a Trebuchet Category: Work, Energy, Power Date Added: 20160112 Submitter: Flipping Physics Learn how to use the Conservation of Mechanical Energy equation by solving a trebuchet problem. Want Lecture Notes? This is an AP Physics 1 topic. Content Times: 0:08 The problem 1:08 Why mechanical energy is conserved 1:37 Setting the zero line and initial and final points 2:32 The three types of mechanical energy 3:55 Canceling mechanical energies from the equation 4:54 Solving the eq

 elastic
 gravitational
 (and 8 more)

Name: Introduction to Conservation of Mechanical Energy with Demonstrations Category: Work, Energy, Power Date Added: 20151218 Submitter: Flipping Physics Ian Terry, winner of Big Brother 14, makes a special appearance to help us learn about Conservation of Mechanical Energy. See several demonstrations and understand when mechanical energy is conserved. Want Lecture Notes? This is an AP Physics 1 topic. Content Times: 0:01 Reviewing the three different types of mechanical energy 0:23 Mr. Terry drops an object for our first demonstration 0:58 Calculating Kinetic

 demonstration
 conservation
 (and 7 more)

Name: Introduction to Elastic Potential Energy with Examples Category: Work, Energy, Power Date Added: 20161103 Submitter: Flipping Physics Mr. Fullerton of APlusPhysics makes a guest appearance as a floating head to help us learn about Elastic Potential Energy. Several examples of objects which store elastic potential energy are shown and one example of stored elastic potential energy is calculated. Want Lecture Notes? This is an AP Physics 1 topic. Content Times: 0:01 Defining Elastic Potential Energy 1:38 The equation for Elastic Potential Energy 2:08 De

 demonstration
 equilibrium position
 (and 7 more)

Review of the topics of Linear Momentum and Impulse covered in the AP Physics 1 curriculum. Content Times: 0:16 Linear Momentum 0:51 Conservation of Momentum 1:26 Types of Collisions 2:29 Newtonâ€™s Second Law in terms of Momentum 3:16 Impulse 4:11 Impulse during collisions Multilingual? [url="http://www.flippingphysics.com/translate.html"]Please help translate Flipping Physics videos![/url] Want [url="http://www.flippingphysics.com/ap1momentumreview.html"]Lecture Notes[/url]? Next Video: [url="http://www.flippingphysics.com/ap1rotationalkinematicsreview.html"]Rotational Kin

Review of the topics of Work, Energy, Power and Hookeâ€™s Law covered in the AP Physics 1 curriculum. Content Times: 0:18 Work 1:38 Kinetic Energy 2:13 Elastic Potential Energy 3:02 Gravitational Potential Energy 4:02 Work and Energy are in Joules 4:58 Conservation of Mechanical Energy 5:54 Work due to Friction equals the Change in Mechanical Energy 6:46 Power 7:46 Hookeâ€™s Law Multilingual? [url="http://www.flippingphysics.com/translate.html"]Please help translate Flipping Physics videos[/url]! Want [url="http://www.flippingphysics.com/ap1workreview.html"]Lecture Notes[/url
 1 comment

 conservation
 mechanical

(and 8 more)
Tagged with:

Name: Linear Momentum and Impulse Review for AP Physics 1 Category: Exam Prep Date Added: 18 March 2015  10:30 AM Submitter: Flipping Physics Short Description: None Provided Review of the topics of Linear Momentum and Impulse covered in the AP Physics 1 curriculum. Content Times: 0:16 Linear Momentum 0:51 Conservation of Momentum 1:26 Types of Collisions 2:29 Newtonâ€™s Second Law in terms of Momentum 3:16 Impulse 4:11 Impulse during collisions Multilingual? View Video

Name: Work, Energy and Power Review for AP Physics 1 Category: Exam Prep Date Added: 13 March 2015  08:25 AM Submitter: Flipping Physics Short Description: None Provided Review of the topics of Work, Energy, Power and Hookeâ€™s Law covered in the AP Physics 1 curriculum. Content Times: 0:18 Work 1:38 Kinetic Energy 2:13 Elastic Potential Energy 3:02 Gravitational Potential Energy 4:02 Work and Energy are in Joules 4:58 Conservation of Mechanical Energy 5:54 Work due to Friction equals the Change in Mechanical Energy 6:46 Power 7:46 Hookeâ€™s Law Multilingual? View Video

 conservation
 mechanical

(and 8 more)
Tagged with:
Footer title
This content can be configured within your theme settings in your ACP. You can add any HTML including images, paragraphs and lists.
Footer title
This content can be configured within your theme settings in your ACP. You can add any HTML including images, paragraphs and lists.
Footer title
This content can be configured within your theme settings in your ACP. You can add any HTML including images, paragraphs and lists.