Search the Community
Showing results for tags 'introductory'.
Found 22 results

The rules of Significant Figures (or Digits) with several examples and a common mistake. Also a few Scientific Notation Examples. Content Times: 0:19 Defining Significant Figures 1:13 The Rules of Significant Figures 1:28 First Example 1:54 Second Example 2:39 Third Example 3:10 Many More Examples 4:47 Scientific Notation and Significant Digits Want Lecture Notes? Next Video: Rounding and Working with Significant Figures in Physics
 1 comment

 significant
 digits

(and 2 more)
Tagged with:

Learn how to use the Conservation of Mechanical Energy equation by solving a trebuchet problem. Want Lecture Notes? This is an AP Physics 1 topic. Content Times: 0:08 The problem 1:08 Why mechanical energy is conserved 1:37 Setting the zero line and initial and final points 2:32 The three types of mechanical energy 3:55 Canceling mechanical energies from the equation 4:54 Solving the equation 6:18 It’s final speed not final velocity 6:51 Why we can’t use the projectile motion equations 7:43 Do we really have to write all that down? Yes. Thank you to my students Will, Jacob, Natalie and Mery; my students who built and let me use their trebuchet! Next Video: Conservation of Energy Problem with Friction, an Incline and a Spring by Billy Multilingual? Please help translate Flipping Physics videos! Previous Video: Introduction to Elastic Potential Energy with Examples 1¢/minute

 problem
 demonstration
 (and 8 more)

Name: Introductory Conservation of Mechanical Energy Problem using a Trebuchet Category: Work, Energy, Power Date Added: 20160112 Submitter: Flipping Physics Learn how to use the Conservation of Mechanical Energy equation by solving a trebuchet problem. Want Lecture Notes? This is an AP Physics 1 topic. Content Times: 0:08 The problem 1:08 Why mechanical energy is conserved 1:37 Setting the zero line and initial and final points 2:32 The three types of mechanical energy 3:55 Canceling mechanical energies from the equation 4:54 Solving the equation 6:18 It’s final speed not final velocity 6:51 Why we can’t use the projectile motion equations 7:43 Do we really have to write all that down? Yes. Thank you to my students Will, Jacob, Natalie and Mery; my students who built and let me use their trebuchet! Next Video: Conservation of Energy Problem with Friction, an Incline and a Spring by Billy Multilingual? Please help translate Flipping Physics videos! Previous Video: Introduction to Elastic Potential Energy with Examples 1¢/minute Introductory Conservation of Mechanical Energy Problem using a Trebuchet

 elastic
 gravitational
 (and 8 more)

Name: Does the Book Move? An Introductory Friction Problem Category: Dynamics Date Added: 20150819 Submitter: Flipping Physics Determine if the book moves or not and the acceleration of the book. It’s all about static and kinetic friction. Want Lecture Notes? This is an AP Physics 1 topic. Content Times: 0:08 Reading and translating the problem 0:57 5 Steps to help solve any Free Body Diagram problem 1:26 Drawing the Free Body Diagram 2:24 Sum the forces in the ydirection 3:22 Sum the forces in the xdirection 4:56 The answer to part (a) 6:22 Solving part (b) Multilingual? Please help translate Flipping Physics videos! Previous Video: Experimentally Graphing the Force of Friction 1¢/minute Does the Book Move? An Introductory Friction Problem

Determine if the book moves or not and the acceleration of the book. It’s all about static and kinetic friction. Want Lecture Notes? This is an AP Physics 1 topic. Content Times: 0:08 Reading and translating the problem 0:57 5 Steps to help solve any Free Body Diagram problem 1:26 Drawing the Free Body Diagram 2:24 Sum the forces in the ydirection 3:22 Sum the forces in the xdirection 4:56 The answer to part (a) 6:22 Solving part (b) Multilingual? Please help translate Flipping Physics videos! Previous Video: Experimentally Graphing the Force of Friction 1¢/minute

Learn how to solve a basic tension force problem with demonstration! Want Lecture Notes? This is an AP Physics 1 topic. Content Times: 0:00 The Problem Demonstrated 0:29 5 Steps to Solve and Free Body Diagram Problem 0:50 Drawing the Free Body Diagram 2:03 Resolving Tension Force 1 into its components (numbers dependency) 4:00 Introducing the Equation Holster! 5:11 Redraw the Free Body Diagram 5:32 Sum the forces in the ydirection 7:24 Sum the forces in the xdirection 8:29 Demonstrating our solution is correct Multilingual? Please help translate Flipping Physics videos! Next Video: Introduction to Static and Kinetic Friction by Bobby Previous Video: 5 Steps to Solve any Free Body Diagram Problem 1¢/minute

Name: An Introductory Tension Force Problem Category: Dynamics Date Added: 20150730 Submitter: Flipping Physics Learn how to solve a basic tension force problem with demonstration! Want Lecture Notes? This is an AP Physics 1 topic. Content Times: 0:00 The Problem Demonstrated 0:29 5 Steps to Solve and Free Body Diagram Problem 0:50 Drawing the Free Body Diagram 2:03 Resolving Tension Force 1 into its components (numbers dependency) 4:00 Introducing the Equation Holster! 5:11 Redraw the Free Body Diagram 5:32 Sum the forces in the ydirection 7:24 Sum the forces in the xdirection 8:29 Demonstrating our solution is correct Multilingual? Please help translate Flipping Physics videos! Next Video: Introduction to Static and Kinetic Friction by Bobby Previous Video: 5 Steps to Solve any Free Body Diagram Problem 1¢/minute An Introductory Tension Force Problem

An introductory projectile motion problem where you have to break the initial velocity vector in to its components before you can work with it. The NerdAPult is the perfect tool for showing projectile motion. Content Times: 0:02 Introducing the NerdAPult 0:43 Demonstrating the marshmallow capabilities of the NerdAPult 1:18 Reading the problem 2:26 Starting to solve the problem 3:03 What do we do with the initial velocity? 3:45 Solving for the initial velocity in the ydirection 4:27 Solving for the initial velocity in the xdirection 5:13 Deciding which direction to start working with 5:38 Solving for the change in time in the xdirection 6:34 Solving for the displacement in the ydirection 7:54 Proving that our answer is correct 8:58 The Review [url="http://www.flippingphysics.com/nerdapult.html"]Want Lecture Notes?[/url] Next Problem: [url="http://www.flippingphysics.com/measuringvi.html"]NerdAPult  Measuring Initial Velocity[/url] Previous Problem: [url="http://www.flippingphysics.com/projectilemotionproblempart1of2.html"]An Introductory Projectile Motion Problem with an Initial Horizontal Velocity[/url] Want a NerdAPult? You can purchase one at [url="http://marshmallowcatapults.com"]marshmallowcatapults.com[/url] [url="http://www.flippingphysics.com/give.html"]1¢/minute[/url]

 break
 components

(and 8 more)
Tagged with:

Name: NerdAPult  An Introductory Projectile Motion Problem Category: Kinematics Date Added: 23 May 2014  02:05 PM Submitter: Flipping Physics Short Description: None Provided An introductory projectile motion problem where you have to break the initial velocity vector in to its components before you can work with it. The NerdAPult is the perfect tool for showing projectile motion. Content Times: 0:02 Introducing the NerdAPult 0:43 Demonstrating the marshmallow capabilities of the NerdAPult 1:18 Reading the problem 2:26 Starting to solve the problem 3:03 What do we do with the initial velocity? 3:45 Solving for the initial velocity in the ydirection 4:27 Solving for the initial velocity in the xdirection 5:13 Deciding which direction to start working with 5:38 Solving for the change in time in the xdirection 6:34 Solving for the displacement in the ydirection 7:54 Proving that our answer is correct 8:58 The Review View Video

 break
 components

(and 8 more)
Tagged with:

Now that we have dropped the ball into the bucket, we can determine the final velocity of the ball right before it strikes the bucket. Don't forget that velocity is a vector and has both magnitude and direction. Yep, component vector review! Content Times: 0:34 Finding the final velocity in the y direction. 1:52 We need to find the hypotenuse! 2:28 Finding the final velocity in the x direction. 2:57 Finding the magnitude of the final velocity. 4:06 Finding the direction of the final velocity. 5:08 The number answer. 5:52 Visualizing the answer. 6:28 Why is the ball always right below mr.p's hand? 7:07 Doesn't the ball travel farther than mr.p's hand? 7:33 The Review. [url="http://www.flippingphysics.com/projectilemotionproblempart2of2.html"]Want Lecture Notes?[/url] Next Video: [url="http://www.flippingphysics.com/howmany.html"]How Many Attempts did it Really Take?[/url] [url="http://www.flippingphysics.com/theeulermethod.html"]A Brief Look at the Force of Drag using Numerical Modeling (or The Euler Method)[/url] Previous Video: [url="http://www.flippingphysics.com/projectilemotionproblempart1of2.html"](part 1 of 2) An Introductory Projectile Motion Problem with an Initial Horizontal Velocity[/url] [url="http://www.flippingphysics.com/give.html"]1¢/minute[/url]
 2 comments

 projectile
 motion

(and 7 more)
Tagged with:

Name: (Part 2 of 2) An Introductory Projectile Motion Problem with an Initial Horizontal Velocity Category: Kinematics Date Added: 22 May 2014  04:57 PM Submitter: Flipping Physics Short Description: None Provided Now that we have dropped the ball into the bucket, we can determine the final velocity of the ball right before it strikes the bucket. Don't forget that velocity is a vector and has both magnitude and direction. Yep, component vector review! Content Times: 0:34 Finding the final velocity in the y direction. 1:52 We need to find the hypotenuse! 2:28 Finding the final velocity in the x direction. 2:57 Finding the magnitude of the final velocity. 4:06 Finding the direction of the final velocity. 5:08 The number answer. 5:52 Visualizing the answer. 6:28 Why is the ball always right below mr.p's hand? 7:07 Doesn't the ball travel farther than mr.p's hand? 7:33 The Review. View Video

 projectile
 motion

(and 7 more)
Tagged with:

Can you drop a ball from a moving vehicle and get it to land in a bucket? You can using Physics! In this video we solve an introductory projectile motion problem involving an initial horizontal velocity and predict how far in front of the bucket to drop the ball. Content Times: 0:17 Reading the problem. 0:41 Visualizing the problem. 1:18 Translating the problem. 2:31 Converting from miles per hour to meters per second. 3:10 Two common mistakes about projectile motion givens. 4:29 Beginning to solve the problem. 5:13 Solving for the change in time in the ydirection. 6:22 Solving for the displacement in the xdirection. 7:29 Video proof that it works. 8:14 Air resistance? 9:09 In our next lesson... [url="http://www.flippingphysics.com/projectilemotionproblempart1of2.html"]Want Lecture Notes?[/url] Next Video: [url="http://www.flippingphysics.com/projectilemotionproblempart2of2.html"](part 2 of 2) An Introductory Projectile Motion Problem with an Initial Horizontal Velocity[/url] [url="http://www.flippingphysics.com/howmany.html"]How Many Attempts did it Really Take?[/url] [url="http://www.flippingphysics.com/theeulermethod.html"]A Brief Look at the Force of Drag using Numerical Modeling (or The Euler Method)[/url] Previous Video: [url="http://www.flippingphysics.com/projectilemotion.html"]Introduction to Projectile Motion[/url] [url="http://www.flippingphysics.com/give.html"]1¢/minute[/url]
 2 comments

 introductory
 projectile

(and 8 more)
Tagged with:

Name: (Part 1 of 2) An Introductory Projectile Motion Problem with an Initial Horizontal Velocity Category: Kinematics Date Added: 22 May 2014  04:49 PM Submitter: Flipping Physics Short Description: None Provided Can you drop a ball from a moving vehicle and get it to land in a bucket? You can using Physics! In this video we solve an introductory projectile motion problem involving an initial horizontal velocity and predict how far in front of the bucket to drop the ball. Content Times: 0:17 Reading the problem. 0:41 Visualizing the problem. 1:18 Translating the problem. 2:31 Converting from miles per hour to meters per second. 3:10 Two common mistakes about projectile motion givens. 4:29 Beginning to solve the problem. 5:13 Solving for the change in time in the ydirection. 6:22 Solving for the displacement in the xdirection. 7:29 Video proof that it works. 8:14 Air resistance? 9:09 In our next lesson... View Video

 introductory
 projectile

(and 8 more)
Tagged with:

A simple, introductory vector addition problem that combines the concepts of vectors, cardinal directions, tiptotail vector addition and component vectors. Content Times: 0:14 Reading and understanding the problem. 1:25 Drawing the Vector Diagram. 2:28 A common mistake about where to place the arrowhead on the Resultant Vector. 3:39 This is NOT a Vector Diagram! 4:34 How NOT to solve the problem. 5:12 Breaking vector B in to its component in the y direction. 6:02 Breaking vector B in to its component in the x direction. 6:52 Redrawing the Vector Diagram using the components of vector B. 7:30 Finding the direction of our Resultant Vector. 8:35 Finding the magnitude of our Resultant Vector. 9:47 Summarizing the entire problem in 27 seconds. 10:19 The review. [url="http://www.flippingphysics.com/introductoryvectoradditionproblem.html"]Want Lecture Notes?[/url] Next Video: [url="http://www.flippingphysics.com/datatable.html"]Using a Data Table to Make Vector Addition Problems Easier[/url] Previous Video: [url="http://www.flippingphysics.com/vectorcomponents.html"]Introduction to Vector Components[/url] [url="http://www.flippingphysics.com/give.html"]1¢/minute[/url]
 3 comments

 introductory
 vector

(and 6 more)
Tagged with:

Name: Introductory Vector Addition Problem using Component Vectors Category: Kinematics Date Added: 22 May 2014  04:40 PM Submitter: Flipping Physics Short Description: None Provided A simple, introductory vector addition problem that combines the concepts of vectors, cardinal directions, tiptotail vector addition and component vectors. Content Times: 0:14 Reading and understanding the problem. 1:25 Drawing the Vector Diagram. 2:28 A common mistake about where to place the arrowhead on the Resultant Vector. 3:39 This is NOT a Vector Diagram! 4:34 How NOT to solve the problem. 5:12 Breaking vector B in to its component in the y direction. 6:02 Breaking vector B in to its component in the x direction. 6:52 Redrawing the Vector Diagram using the components of vector B. 7:30 Finding the direction of our Resultant Vector. 8:35 Finding the magnitude of our Resultant Vector. 9:47 Summarizing the entire problem in 27 seconds. 10:19 The review. View Video

 introductory
 vector

(and 6 more)
Tagged with:

This is a very basic introductory to TiptoTail Vector Addition Problem using a motorized toy car that I made. I don't just talk about it in a general sense, I actually show the different vectors being added together. Content Times: 0:16 Problem introduction 0:36 Determining the velocity of the track 1:43 Defining our givens 3:08 Visual representation of our vectors 3:56 Slow Velocity Racer on the track 4:20 Drawing the resultant vector 5:03 Mathematically finding the magnitude of the resultant velocity vector 6:28 Mathematically finding the direction of the resultant velocity vector 8:45 Summarizing and understanding our results 9:20 49 + 42 = 65? 10:57 The Review [url="http://www.flippingphysics.com/tiptotailvectoraddition.html"]Want Lecture Notes?[/url] Next Video: [url="http://www.flippingphysics.com/cardinaldirections.html"]How to use Cardinal Directions with Vectors[/url] Previous Video: [url="http://www.flippingphysics.com/vectorsandscalars.html"]Introduction to TiptoTail Vector Addition, Vectors and Scalars[/url] [url="http://www.flippingphysics.com/give.html"]1¢/minute[/url]
 1 comment

 tiptotail
 vector

(and 5 more)
Tagged with:

Name: Introductory TiptoTail Vector Addition Problem Category: Kinematics Date Added: 22 May 2014  04:36 PM Submitter: Flipping Physics Short Description: None Provided This is a very basic introductory to TiptoTail Vector Addition Problem using a motorized toy car that I made. I don't just talk about it in a general sense, I actually show the different vectors being added together. Content Times: 0:16 Problem introduction 0:36 Determining the velocity of the track 1:43 Defining our givens 3:08 Visual representation of our vectors 3:56 Slow Velocity Racer on the track 4:20 Drawing the resultant vector 5:03 Mathematically finding the magnitude of the resultant velocity vector 6:28 Mathematically finding the direction of the resultant velocity vector 8:45 Summarizing and understanding our results 9:20 49 + 42 = 65? 10:57 The Review View Video

 tiptotail
 vector

(and 5 more)
Tagged with:

In this introductory freefall acceleration problem we analyze a video of a medicine ball being dropped to determine the final velocity and the time in freefall. Included are three common mistakes students make. "Why include mistakes?" you might ask. Well, it is important to understand what happens when you make mistakes so that you can recognize them in the future. There is also brief description of "parallax" and how it affects what you see in the video compared to reality. Content TImes: 0:26 Reading and viewing the problem 0:50 Describing the parallax issue 1:52 Translating the problem to physics 2:05 1st common mistake: Velocity final is not zero 3:09 Finding the 3rd UAM variable, initial velocity 3:56 Don't we need to know the mass of the medicine ball? 4:35 Solving for the final velocity in the y direction: part (a) 5:39 Identifying our 2nd common mistake: Square root of a negative number? 7:56 Solving for the change in time: part (b) 8:28 Identifying our 3rd common mistake: Negative time? 9:36 Please don't write negative down! 10:27 Does reality match the physics? 11:07 The Review [url="http://www.flippingphysics.com/droppingaballfrom20meters.html"]Want Lecture Notes?[/url] Next Video: [url="http://www.flippingphysics.com/graphingthedropofaball.html"]Graphing the Drop of a Ball from 2.0 Meters[/url]  An Introductory FreeFall Acceleration Problem Previous Video: [url="http://www.flippingphysics.com/apollo15featherandhammerdrop.html"]Analyzing the Apollo 15 Feather and Hammer Drop[/url]  A Basic Introductory FreeFall Problem
 1 comment

 freefall
 acceleration

(and 7 more)
Tagged with:

Name: Dropping a Ball from 2.0 Meters  An Introductory FreeFall Acceleration Problem Category: Kinematics Date Added: 22 May 2014  04:20 PM Submitter: Flipping Physics Short Description: None Provided In this introductory freefall acceleration problem we analyze a video of a medicine ball being dropped to determine the final velocity and the time in freefall. Included are three common mistakes students make. "Why include mistakes?" you might ask. Well, it is important to understand what happens when you make mistakes so that you can recognize them in the future. There is also brief description of "parallax" and how it affects what you see in the video compared to reality. Content TImes: 0:26 Reading and viewing the problem 0:50 Describing the parallax issue 1:52 Translating the problem to physics 2:05 1st common mistake: Velocity final is not zero 3:09 Finding the 3rd UAM variable, initial velocity 3:56 Don't we need to know the mass of the medicine ball? 4:35 Solving for the final velocity in the y direction: part (a) 5:39 Identifying our 2nd common mistake: Square root of a negative number? 7:56 Solving for the change in time: part ( 8:28 Identifying our 3rd common mistake: Negative time? 9:36 Please don't write negative down! 10:27 Does reality match the physics? 11:07 The Review Want Lecture Notes? Next Video: Graphing the Drop of a Ball from 2.0 Meters  An Introductory FreeFall Acceleration Problem Previous Video: Analyzing the Apollo 15 Feather and Hammer Drop  A Basic Introductory FreeFall Problem View Video

 freefall
 acceleration

(and 7 more)
Tagged with:

This video continues what we learned about UAM in our previous lesson. We work through a introductory problem involving a bicycle on which we have applied the brakes. Content Times: 0:28 Reading the problem 0:48 Seeing the problem 1:15 Translating the problem to physics 2:35 Why is it final speed and not velocity? 3:48 Solving for the acceleration 6:03 Converting initial velocity to meters per second 7:32 Solving for distance traveled. 8:05 A common mistake 10:02 Two more ways to solve for the distance traveled. 10:45 Why didn't the speedometer show the correct final speed? [url="http://www.flippingphysics.com/toycaruamproblem.html"]Want Lecture Notes?[/url] Next Video: [url="http://www.flippingphysics.com/toycaruamproblem.html"]Toy Car UAM Problem with Two Difference Accelerations[/url] Previous Video: [url="http://www.flippingphysics.com/introductoryuniformlyacceleratedmotionproblem.html"]Introduction to Uniformly Accelerated Motion with Examples of Objects in UAM[/url]

 Uniformly
 acclerated

(and 5 more)
Tagged with:

Name: Introductory Uniformly Accelerated Motion Problem  A Braking Bicycle Category: Kinematics Date Added: 21 May 2014  03:43 PM Submitter: Flipping Physics Short Description: None Provided This video continues what we learned about UAM in our previous lesson. We work through a introductory problem involving a bicycle on which we have applied the brakes. Content Times: 0:28 Reading the problem 0:48 Seeing the problem 1:15 Translating the problem to physics 2:35 Why is it final speed and not velocity? 3:48 Solving for the acceleration 6:03 Converting initial velocity to meters per second 7:32 Solving for distance traveled. 8:05 A common mistake 10:02 Two more ways to solve for the distance traveled. 10:45 Why didn't the speedometer show the correct final speed? View Video

 Uniformly
 acclerated

(and 5 more)
Tagged with:

Name: Introduction to Significant Figures with Examples Category: Introductory Concepts Date Added: 20160315 Submitter: Flipping Physics The rules of Significant Figures (or Digits) with several examples and a common mistake. Also a few Scientific Notation Examples. Content Times: 0:19 Defining Significant Figures 1:13 The Rules of Significant Figures 1:28 First Example 1:54 Second Example 2:39 Third Example 3:10 Many More Examples 4:47 Scientific Notation and Significant Digits Want Lecture Notes? Next Video: Rounding and Working with Significant Figures in Physics Introduction to Significant Figures with Examples

 introductory
 figures

(and 2 more)
Tagged with:
Terms of Use
The pages of APlusPhysics.com, Physics in Action podcasts, and other online media at this site are made available as a service to physics students, instructors, and others. Their use is encouraged and is free of charge. Teachers who wish to use materials either in a classroom demonstration format or as part of an interactive activity/lesson are granted permission (and encouraged) to do so. Linking to information on this site is allowed and encouraged, but content from APlusPhysics may not be made available elsewhere on the Internet without the author's written permission.
Copyright Notice
APlusPhysics.com, Silly Beagle Productions and Physics In Action materials are copyright protected and the author restricts their use to online usage through a live internet connection. Any downloading of files to other storage devices (hard drives, web servers, school servers, CDs, etc.) with the exception of Physics In Action podcast episodes is prohibited. The use of images, text and animations in other projects (including nonprofit endeavors) is also prohibited. Requests for permission to use such material on other projects may be submitted in writing to info@aplusphysics.com. Licensing of the content of APlusPhysics.com for other uses may be considered in the future.